[1]
|
M. Afonso, J. Bioucas-Dias and M. Figueiredo, An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE Trans. Image Process., 20 (2011), 681-695.
doi: 10.1109/TIP.2010.2076294.
|
[2]
|
H. Andrew and B. Hunt,
Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977.
|
[3]
|
J. F. Aujol and G. Gilboa, Constrained and SNR-based solutions for TV-Hilbert space image denoising, J. Math. Imag. Vision, 26 (2006), 217-237.
doi: 10.1007/s10851-006-7801-6.
|
[4]
|
S. Babacan, R. Molina and A. Katsaggelos, Parameter estimation in TV image restoration using variational distribution approximation, IEEE Trans. Image Process., 17 (2008), 326-339.
doi: 10.1109/TIP.2007.916051.
|
[5]
|
S. Babacan, R. Molina and A. Katsaggelos, Variational bayesian blind deconvolution using a total variation prior, IEEE Trans. Image Process., 18 (2009), 12-26.
doi: 10.1109/TIP.2008.2007354.
|
[6]
|
D. Bertsekas, A. Nedic and E. Ozdaglar,
Convex Analysis and Optimization, Athena Scientific, 2003.
|
[7]
|
J. Bioucas-Dias, Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors, IEEE Trans. Image Process., 15 (2006), 937-951.
doi: 10.1109/TIP.2005.863972.
|
[8]
|
P. Blomgren and T. Chan, Modular solvers for image restoration problems using the discrepancy principle, Numer. Linear Algebra Appl., 9 (2002), 347-358.
doi: 10.1002/nla.278.
|
[9]
|
S Bonettini and V Ruggiero, An alternating extragradient method for total variation-based image restoration from Poisson data,
Inverse Problems, 27 (2011), 095001, 26pp.
doi: 10.1088/0266-5611/27/9/095001.
|
[10]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[11]
|
P. Craven and G. Wahba, Smoothing noisy data with spline functions, Numerische Mathematik, 31 (1978), 377-403.
|
[12]
|
I. Daubechies, M. Defrise and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.
doi: 10.1002/cpa.20042.
|
[13]
|
M. Figueiredo, J. M. Bioucas-Dias and M. V. Afonso, Fast frame-based image deconvolution using variable splitting and constrained optimization, In Proc. IEEE/SP 15th Workshop Statistical Signal Processing SSP ’09, (2009), 109-112.
|
[14]
|
M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12 (2003), 906-916.
doi: 10.1109/TIP.2003.814255.
|
[15]
|
N. Galatsanos and A. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Trans. Image Process., 1 (1992), 322-336.
|
[16]
|
D. Girard, The fast monte-carlo cross-validation and cl procedures-comments, new results and application to image recovery problems, Computational statistics, 10 (1995), 205-258.
|
[17]
|
G. H. Golub, M. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.
doi: 10.2307/1268518.
|
[18]
|
E. Haber and D. Oldenburg, A gcv based method for nonlinear ill-posed problems, Computational Geosciences, 4 (2000), 41-63.
doi: 10.1023/A:1011599530422.
|
[19]
|
P. Hansen and D. O'Leary, The use of the $ L $-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993), 1487-1503.
doi: 10.1137/0914086.
|
[20]
|
P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992), 561-580.
doi: 10.1137/1034115.
|
[21]
|
H. Liao, F. Li and M. Ng, Selection of regularization parameter in total variation image restoration, J. Opt. Soc. Am. A, 26 (2009), 2311-2320.
doi: 10.1364/JOSAA.26.002311.
|
[22]
|
S. Mallat,
A Wavelet Tour of Signal Processing, Academic Press, Inc., San Diego, CA, 1998.
|
[23]
|
V. A. Morozov,
Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984. Translated from the Russian by A. B. Aries, Translation edited by Z. Nashed.
doi: 10.1007/978-1-4612-5280-1.
|
[24]
|
M. Ng, R. Chan and W. Tang, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), 851-866.
doi: 10.1137/S1064827598341384.
|
[25]
|
M. Ng, P. Weiss and X. Yuan, Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods, SIAM J. Sci. Comput., 32 (2010), 2710-2736.
doi: 10.1137/090774823.
|
[26]
|
N Nguyen, P. Milanfar and G. Golub, Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement, IEEE Trans. Image Process., 10 (2001), 1299-1308.
doi: 10.1109/83.941854.
|
[27]
|
J. P. Oliveira, J. M. Bioucas-Dias and M. A. T. Figueiredo, Adaptive total variation image deblurring: A majorization--minimization approach, Signal Processing, 89 (2009), 1683-1693.
|
[28]
|
F. O'Sullivan and G. Wahba, A cross validated bayesian retrieval algorithm for nonlinear remote sensing experiments, Journal of Computational Physics, 59 (1985), 441-455.
|
[29]
|
S. Ramani, Z. Liu, J. Rosen, J. Nielsen and J. Fessler, Regularization parameter selection for nonlinear iterative image restoration and mri reconstruction using gcv and sure-based methods, IEEE Trans. Image Process., 21 (2012), 3659-3672.
doi: 10.1109/TIP.2012.2195015.
|
[30]
|
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[31]
|
A. Tikhonov, Solution of incorrectly formulated problems and regularization method, Soviet Math. Dokl, 4 (1963), 1035-1038.
|
[32]
|
P. Weiss, L. Blanc-Féraud and G. Aubert, Efficient schemes for total variation minimization under constraints in image processing, SIAM J. Sci. Comput., 31 (2009), 2047-2080.
doi: 10.1137/070696143.
|
[33]
|
Y. Wen and R. Chan, Parameter selection for total-variation-based image restoration using discrepancy principle, IEEE Trans. Image Process., 21 (2012), 1770-1781.
doi: 10.1109/TIP.2011.2181401.
|
[34]
|
Y. Wen, R. Chan and A. Yip, A primal-dual method for total variation-based wavelet domain inpainting, IEEE Trans. Image Process., 21 (2012), 106-114.
doi: 10.1109/TIP.2011.2159983.
|
[35]
|
M. Zhu,
Fast Numerical Algorithms for Total Variation Based Image Restoration, PhD thesis, University of California, Los Angeles, 2008.
|
[36]
|
M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, 08-34, 2007.
|