\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Using generalized cross validation to select regularization parameter for total variation regularization problems

The first author is supported by NSFC Grant No. 11361030, the Construct Program of the Key Discipline in Hunan Province, and the SRF of Hunan Provincial Education Department Grant No.17A128. The second author is supported by the HKRGC Grant No. CUHK14306316, HKRGC CRF Grant C1007-15G, HKRGC AoE Grant AoE/M-05/12, CUHK DAG No. 4053211, and CUHK FIS Grant No. 1907303.
Abstract Full Text(HTML) Figure(4) / Table(11) Related Papers Cited by
  • The regularization approach is used widely in image restoration problems. The visual quality of the restored image depends highly on the regularization parameter. In this paper, we develop an automatic way to choose a good regularization parameter for total variation (TV) image restoration problems. It is based on the generalized cross validation (GCV) approach and hence no knowledge of noise variance is required. Due to the lack of the closed-form solution of the TV regularization problem, difficulty arises in finding the minimizer of the GCV function directly. We reformulate the TV regularization problem as a minimax problem and then apply a first-order primal-dual method to solve it. The primal subproblem is rearranged so that it becomes a special Tikhonov regularization problem for which the minimizer of the GCV function is readily computable. Hence we can determine the best regularization parameter in each iteration of the primal-dual method. The regularization parameter for the original TV regularization problem is then obtained by an averaging scheme. In essence, our method needs only to solve the TV regulation problem twice: one to determine the regularization parameter and one to restore the image with that parameter. Numerical results show that our method gives near optimal parameter, and excellent performance when compared with other state-of-the-art adaptive image restoration algorithms.

    Mathematics Subject Classification: 65F10, 65F22, 65K10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Original goldhill image with size $256\times 256$ and man image with size $512\times 512$

    Figure 2.  ISNR value versus the regularization parameter $\alpha$ for man image degraded by the eight blurs listed in Table 1. Here the noise variance $\sigma = 2, 4, 6, 8$

    Figure 3.  ISNR value versus the regularization parameter $\alpha$ for man image degraded by the eight blurs listed in Table 1. Here the noise variance $\sigma = 10, 20, 30, 40$

    Figure 4.  The test images: macaws, motors, sailboat at pier, tropical island, lighthouse in Maine, P51 Mustang, Portland Head Light, barn and pond, mountain chalet. The sizes of the images are all $512 \times 768$

    Table 1.  The point spread functions of the blurs used in the tests

    TypeFunction
    PSF1$\texttt{fspecial('average', 3)} $
    PSF2$\texttt{fspecial('average', 9)} $
    PSF3$ \texttt{fspecial('gaussian', 3, 1)}$
    PSF4$\texttt{fspecial('gaussian', 9, 3)}$
    PSF5$\texttt{fspecial('disk', 2)}$
    PSF6$\texttt{fspecial('disk', 4)}$
    PSF7 $[1, 4, 6, 4, 1]'\times [1, 4, 6, 4, 1]/256$
    PSF8$\texttt{fspecial('motion', 20, 45)}$
     | Show Table
    DownLoad: CSV

    Table 2.  Regularization parameter $\alpha$ obtained by our approach for difference step sizes $t$ and $s = \frac{1}{16t}$

    Goldhill Man
    PSF σ t = 0.1 t = 0.5 t = 1 t = 0.1 t = 0.5 t = 1
    PSF1 2 4.21 4.21 4.21 5.27 5.27 5.27
    4 1.05 1.05 1.05 1.65 1.65 1.65
    6 0.71 0.71 0.71 0.78 0.78 0.78
    8 0.49 0.49 0.49 0.50 0.50 0.50
    PSF2 2 17.68 17.68 17.68 7.43 7.43 7.43
    4 5.53 5.53 5.53 3.58 3.58 3.58
    6 2.47 2.47 2.47 1.66 1.66 1.66
    8 1.39 1.39 1.39 0.96 0.96 0.96
    PSF3 2 6.93 6.93 6.93 2.00 2.00 2.00
    4 1.20 1.20 1.20 1.99 1.99 1.99
    6 0.66 0.66 0.66 1.13 1.13 1.13
    8 0.46 0.46 0.46 0.82 0.82 0.82
    PSF4 2 9.41 9.41 9.41 5.66 5.66 5.66
    4 2.66 2.66 2.66 2.43 2.43 2.43
    6 1.39 1.39 1.39 1.16 1.16 1.16
    8 0.91 0.91 0.91 0.74 0.74 0.74
    PSF5 2 5.41 5.41 5.41 6.28 6.28 6.28
    4 1.25 1.25 1.25 1.30 1.30 1.30
    6 0.69 0.69 0.69 0.72 0.72 0.72
    8 0.50 0.50 0.50 0.50 0.50 0.50
    PSF6 2 7.28 7.28 7.28 6.33 6.33 6.33
    4 2.65 2.65 2.65 2.19 2.19 2.19
    6 1.35 1.35 1.35 1.08 1.08 1.08
    8 0.78 0.78 0.78 0.72 0.72 0.72
    PSF7 2 4.22 4.22 4.22 6.51 6.51 6.51
    4 1.23 1.23 1.23 1.33 1.33 1.33
    6 0.76 0.76 0.76 0.70 0.70 0.70
    8 0.50 0.50 0.50 0.48 0.48 0.48
     | Show Table
    DownLoad: CSV

    Table 3.  ISNR results for macaws image

    $\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF122.311.102.331.12$ \underline {{\mathit{3.30}}} $ 3.680.38
    42.690.412.660.37$ \underline {{\mathit{3.41}}} $ 3.710.30
    63.720.503.650.44$ \underline {{\mathit{4.12}}} $ 4.560.44
    84.780.874.680.79$ \underline {{\mathit{4.82}}} $ 5.540.72
    PSF222.121.202.101.18$ \underline {{\mathit{2.86}}} $ 3.470.61
    42.100.642.040.60$ \underline {{\mathit{2.49}}} $ 2.660.17
    62.550.562.490.52$ \underline {{\mathit{2.78}}} $ 3.040.26
    83.210.953.130.95$ \underline {{\mathit{3.32}}} $ 3.610.29
    PSF321.940.641.980.71$ \underline {{\mathit{2.70}}} $ 2.940.24
    42.630.232.610.20$ \underline {{\mathit{3.50}}} $ 3.620.12
    63.820.463.760.40$ \underline {{\mathit{4.30}}} $ 4.690.39
    84.980.904.880.82$ \underline {{\mathit{5.00}}} $ 5.750.75
    PSF421.530.711.510.68$ \underline {{\mathit{2.05}}} $ 2.320.27
    41.740.251.700.22$ \underline {{\mathit{2.04}}} $ 2.300.26
    62.340.282.280.23$ \underline {{\mathit{2.51}}} $ 2.790.28
    83.100.713.020.71$ \underline {{\mathit{3.21}}} $ 3.470.26
    PSF522.131.062.121.04$ \underline {{\mathit{2.73}}} $ 3.330.60
    42.420.242.380.19$ \underline {{\mathit{3.05}}} $ 3.350.30
    63.270.283.190.22$ \underline {{\mathit{3.77}}} $ 4.110.34
    84.250.644.130.56$ \underline {{\mathit{4.61}}} $ 5.030.42
    PSF621.921.001.890.98$ \underline {{\mathit{2.62}}} $ 3.090.47
    41.990.461.950.42$ \underline {{\mathit{2.38}}} $ 2.700.32
    62.550.452.490.41$ \underline {{\mathit{2.73}}} $ 3.070.34
    83.300.833.220.83$ \underline {{\mathit{3.39}}} $ 3.730.34
    PSF722.090.922.080.90$ \underline {{\mathit{2.79}}} $ 3.450.66
    42.460.102.400.03$ \underline {{\mathit{3.21}}} $ 3.470.26
    63.410.193.310.11$ \underline {{\mathit{3.97}}} $ 4.290.32
    84.430.594.300.50$ \underline {{\mathit{4.78}}} $ 5.250.47
    PSF823.261.823.341.88$ \underline {{\mathit{3.78}}} $ 4.410.63
    4$ \underline {{\mathit{2.87}}} $0.952.860.942.76 3.430.56
    6$\underline {{\mathit{3.05}}} $0.703.010.672.52 3.940.89
    8$ \underline {{\mathit{3.49}}} $0.853.410.852.84 4.160.67
     | Show Table
    DownLoad: CSV

    Table 4.  ISNR results for motorcross bikes image

    $\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF122.681.752.711.79$ \underline {{\mathit{3.47}}} $3.850.38
    42.570.802.540.77$ \underline {{\mathit{3.17}}} $3.410.24
    63.200.653.140.59$ \underline {{\mathit{3.61}}} $3.870.26
    84.030.763.950.69$ \underline {{\mathit{4.19}}} $4.590.40
    PSF223.642.233.592.18$ \underline {{\mathit{4.88}}} $5.420.54
    42.950.802.870.77$ \underline {{\mathit{3.40}}} $4.591.19
    62.830.472.700.43$ \underline {{\mathit{3.04}}} $4.191.15
    83.010.422.840.38$ \underline {{\mathit{3.11}}} $4.181.07
    PSF321.891.031.951.09$ \underline {{\mathit{2.90}}} $3.120.22
    42.180.392.170.392.98$ \underline {{\mathit{2.94}}} $$-0.04$
    63.060.463.020.41$ \underline {{\mathit{3.60}}} $3.640.04
    84.040.693.980.63$ \underline {{\mathit{4.25}}} $4.490.24
    PSF421.791.011.750.98$ \underline {{\mathit{2.75}}} $3.560.81
    41.580.251.530.22$ \underline {{\mathit{2.16}}} $2.660.50
    61.820.051.740.01$ \underline {{\mathit{2.21}}} $2.700.49
    82.260.092.140.04$ \underline {{\mathit{2.55}}} $2.940.39
    PSF522.361.642.361.63$ \underline {{\mathit{2.94}}} $3.570.63
    42.360.692.320.65$ \underline {{\mathit{2.92}}} $3.190.27
    62.930.392.860.33$ \underline {{\mathit{3.34}}} $3.650.31
    83.690.443.600.36$ \underline {{\mathit{3.98}}} $4.310.33
    PSF622.531.482.491.44$ \underline {{\mathit{3.42}}} $4.651.23
    42.070.492.000.45$ \underline {{\mathit{2.63}}} $3.460.83
    62.200.212.110.16$ \underline {{\mathit{2.58}}} $3.190.61
    82.620.232.510.17$ \underline {{\mathit{2.83}}} $3.410.58
    PSF722.221.422.211.41$ \underline {{\mathit{3.10}}} $3.390.29
    42.250.502.200.45$ \underline {{\mathit{2.92}}} $3.120.20
    62.880.282.820.21$ \underline {{\mathit{3.39}}} $3.600.21
    83.710.373.620.29$ \underline {{\mathit{4.05}}} $4.350.30
    PSF823.922.354.072.50$ \underline {{\mathit{4.44}}} $5.731.29
    42.960.982.970.98$ \underline {{\mathit{3.16}}} $4.901.74
    6$ \underline {{\mathit{2.76}}} $0.622.700.602.494.131.37
    8$ \underline {{\mathit{2.83}}} $0.542.720.512.213.871.04
     | Show Table
    DownLoad: CSV

    Table 5.  ISNR results for sailboat at pier image

    $\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF122.431.672.511.77$ \underline {{\mathit{2.97}}} $3.730.76
    41.790.521.790.52$ \underline {{\mathit{2.16}}} $2.550.39
    61.930.261.900.23$ \underline {{\mathit{2.25}}} $2.490.24
    82.390.332.350.28$ \underline {{\mathit{2.65}}} $2.840.19
    PSF222.371.592.341.563.23$ \underline {{\mathit{3.12}}} $$-0.11$
    41.950.741.900.71$ \underline {{\mathit{2.32}}} $2.610.29
    61.990.471.920.44$ \underline {{\mathit{2.14}}} $2.710.57
    82.240.412.150.37$ \underline {{\mathit{2.30}}} $2.730.43
    PSF321.610.851.741.00$ \underline {{\mathit{2.36}}} $2.980.62
    41.24-0.041.27-0.00$ \underline {{\mathit{1.78}}} $2.070.29
    61.58-0.161.57-0.17$ \underline {{\mathit{2.06}}} $2.200.14
    82.180.032.15-0.01$ \underline {{\mathit{2.57}}} $2.680.11
    PSF421.220.791.200.77$ \underline {{\mathit{1.72}}} $2.040.32
    41.180.341.150.31$ \underline {{\mathit{1.41}}} $1.770.36
    61.420.181.370.15$ \underline {{\mathit{1.53}}} $1.830.30
    81.810.181.750.14$ \underline {{\mathit{1.85}}} $2.140.29
    PSF521.721.141.741.16$ \underline {{\mathit{2.25}}} $2.940.69
    41.450.371.430.35$ \underline {{\mathit{1.74}}} $2.030.29
    61.680.161.650.12$ \underline {{\mathit{1.92}}} $2.110.19
    82.170.212.120.16$ \underline {{\mathit{2.38}}} $2.410.03
    PSF621.781.151.761.14$ \underline {{\mathit{2.47}}} $3.350.88
    41.520.571.480.54$ \underline {{\mathit{1.80}}} $2.320.52
    61.680.381.640.34$ \underline {{\mathit{1.81}}} $2.120.31
    82.030.361.970.32$ \underline {{\mathit{2.05}}} $2.420.37
    PSF721.590.951.590.96$ \underline {{\mathit{2.15}}} $2.690.54
    41.260.061.240.04$ \underline {{\mathit{1.62}}} $1.960.34
    61.52-0.131.47-0.18$ \underline {{\mathit{1.82}}} $2.040.22
    82.04-0.031.98-0.09$ \underline {{\mathit{2.32}}} $2.440.12
    PSF822.841.943.122.25$ \underline {{\mathit{3.40}}} $3.970.57
    42.360.94$ \underline {{\mathit{2.50}}} $1.012.473.470.97
    62.300.58$ \underline {{\mathit{2.34}}} $0.602.083.090.75
    8$ \underline {{\mathit{2.43}}} $0.44$ \underline {{\mathit{2.43}}} $0.441.983.030.60
     | Show Table
    DownLoad: CSV

    Table 6.  ISNR results for tropical island image

    PSF$\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF121.671.041.701.08$ \underline {{\mathit{2.21}}} $2.950.74
    41.420.181.410.16$ \underline {{\mathit{1.89}}} $2.200.31
    61.940.241.910.20$ \underline {{\mathit{2.37}}} $2.480.11
    82.740.582.690.53$ \underline {{\mathit{3.05}}} $3.180.13
    PSF221.420.851.400.83$ \underline {{\mathit{2.43}}} $2.500.07
    41.440.441.410.42$ \underline {{\mathit{1.77}}} $2.100.33
    61.870.451.840.41$ \underline {{\mathit{2.05}}} $2.340.29
    82.490.962.450.96$ \underline {{\mathit{2.57}}} $2.800.23
    PSF320.850.190.910.27$ \underline {{\mathit{1.48}}} $2.150.67
    40.87-0.400.86-0.40$ \underline {{\mathit{1.46}}} $1.700.24
    61.62-0.171.59-0.21$ \underline {{\mathit{2.15}}} $2.170.02
    82.550.302.510.25$ \underline {{\mathit{2.95}}} $3.030.08
    PSF420.800.390.780.37$ \underline {{\mathit{1.04}}} $1.340.30
    41.030.161.010.13$ \underline {{\mathit{1.08}}} $1.380.30
    61.580.241.540.20$ \underline {{\mathit{1.66}}} $1.840.18
    82.280.742.230.74$ \underline {{\mathit{2.35}}} $2.510.16
    PSF520.970.490.970.49$ \underline {{\mathit{1.29}}} $2.020.73
    41.060.011.04-0.02$ \underline {{\mathit{1.43}}} $1.650.22
    61.670.121.640.07$ \underline {{\mathit{2.02}}} $2.120.10
    82.500.462.440.40$ \underline {{\mathit{2.80}}} $2.840.04
    PSF621.090.641.070.63$ \underline {{\mathit{1.44}}} $2.140.70
    41.260.341.230.32$ \underline {{\mathit{1.41}}} $1.700.29
    61.760.401.730.36$ \underline {{\mathit{1.84}}} $2.030.19
    82.450.832.400.83$ \underline {{\mathit{2.50}}} $2.700.20
    PSF720.770.220.760.21$ \underline {{\mathit{1.30}}} $1.850.55
    40.82-0.350.79-0.38$ \underline {{\mathit{1.25}}} $1.500.25
    61.48-0.171.43-0.22$ \underline {{\mathit{1.90}}} $1.970.07
    82.360.242.300.18$ \underline {{\mathit{2.72}}} $2.730.01
    PSF821.741.041.821.15$ \underline {{\mathit{2.06}}} $2.570.51
    41.680.52$ \underline {{\mathit{1.70}}} $0.531.672.070.37
    6$ \underline {{\mathit{1.99}}} $0.431.970.421.822.480.49
    8$ \underline {{\mathit{2.51}}} $0.922.470.922.292.880.37
     | Show Table
    DownLoad: CSV

    Table 7.  ISNR results for lighthouse in Maine image

    PSF$\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF123.142.363.212.45$ \underline {{\mathit{3.55}}} $4.631.08
    42.150.952.140.94$ \underline {{\mathit{2.51}}} $3.030.52
    62.050.442.020.40$ \underline {{\mathit{2.39}}} $2.630.24
    82.330.272.280.22$ \underline {{\mathit{2.63}}} $2.690.06
    PSF223.442.603.402.55$ \underline {{\mathit{5.07}}} $5.180.11
    42.691.172.621.153.63$ \underline {{\mathit{3.02}}} $$-0.61$
    6$ \underline {{\mathit{2.40}}} $0.822.290.792.982.07$-0.91$
    82.370.632.270.60$ \underline {{\mathit{2.59}}} $2.860.27
    PSF321.861.341.961.47$ \underline {{\mathit{2.78}}} $3.360.58
    41.390.271.410.29$ \underline {{\mathit{2.04}}} $2.190.15
    61.54-0.051.53-0.07$ \underline {{\mathit{2.12}}} $2.130.01
    82.00-0.071.96-0.11$ \underline {{\mathit{2.50}}} $2.530.03
    PSF421.391.001.370.98$ \underline {{\mathit{2.13}}} $3.231.10
    41.290.481.270.46$ \underline {{\mathit{1.50}}} $1.700.20
    61.400.301.360.27$ \underline {{\mathit{1.48}}} $1.750.27
    81.650.231.600.20$ \underline {{\mathit{1.66}}} $1.910.25
    PSF522.101.662.101.67$ \underline {{\mathit{2.72}}} $3.230.51
    41.710.631.690.60$ \underline {{\mathit{2.09}}} $2.310.22
    61.730.131.680.09$ \underline {{\mathit{2.04}}} $2.360.32
    81.98-0.011.92-0.06$ \underline {{\mathit{2.25}}} $2.520.27
    PSF621.991.361.841.34$ \underline {{\mathit{3.39}}} $3.740.35
    41.550.701.520.68$ \underline {{\mathit{1.85}}} $2.460.61
    61.630.451.600.42$ \underline {{\mathit{1.75}}} $1.970.22
    81.860.371.810.34$ \underline {{\mathit{1.87}}} $2.100.23
    PSF721.931.451.931.46$ \underline {{\mathit{2.50}}} $3.020.52
    41.490.401.470.37$ \underline {{\mathit{1.97}}} $2.210.24
    61.57-0.091.53-0.13$ \underline {{\mathit{1.97}}} $2.100.13
    81.89-0.231.83-0.28$ \underline {{\mathit{2.24}}} $2.380.14
    PSF822.922.083.192.38$ \underline {{\mathit{3.63}}} $3.970.34
    42.420.812.500.86$ \underline {{\mathit{2.51}}} $3.490.98
    62.200.38$ \underline {{\mathit{2.22}}} $0.392.013.000.78
    8$ \underline {{\mathit{2.15}}} $0.242.100.231.672.860.71
     | Show Table
    DownLoad: CSV

    Table 8.  ISNR results for P51 Mustang image

    PSF$\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF123.042.333.092.41$ \underline {{\mathit{3.90}}} $4.490.59
    42.741.152.741.14$ \underline {{\mathit{3.24}}} $3.780.54
    63.200.773.150.72$ \underline {{\mathit{3.40}}} $3.930.53
    8$ \underline {{\mathit{3.90}}} $0.823.830.753.834.490.59
    PSF223.582.453.552.41$ \underline {{\mathit{4.22}}} $5.321.10
    43.271.253.231.23$ \underline {{\mathit{3.31}}} $4.421.11
    6$ \underline {{\mathit{3.36}}} $0.783.300.733.104.130.77
    8$ \underline {{\mathit{3.66}}} $0.663.580.623.214.270.61
    PSF322.271.582.361.70$ \underline {{\mathit{3.32}}} $3.740.42
    42.260.632.280.65$ \underline {{\mathit{2.93}}} $3.240.31
    62.910.432.890.40$ \underline {{\mathit{3.30}}} $3.660.36
    83.760.613.710.56$ \underline {{\mathit{3.84}}} $4.360.52
    PSF422.731.552.711.52$ \underline {{\mathit{2.78}}} $3.640.86
    4$ \underline {{\mathit{2.65}}} $0.772.620.732.303.290.64
    6$ \underline {{\mathit{2.88}}} $0.442.830.402.433.440.56
    8$ \underline {{\mathit{3.29}}} $0.413.210.372.753.700.41
    PSF522.652.032.662.03$ \underline {{\mathit{3.04}}} $4.051.01
    42.570.902.540.86$ \underline {{\mathit{2.75}}} $3.400.65
    6$ \underline {{\mathit{3.00}}} $0.522.950.462.993.610.61
    8$ \underline {{\mathit{3.65}}} $0.583.570.523.514.230.58
    PSF623.101.953.081.93$ \underline {{\mathit{3.50}}} $4.901.40
    4$ \underline {{\mathit{2.90}}} $0.992.870.962.683.700.80
    6$ \underline {{\mathit{3.09}}} $0.633.040.592.733.680.59
    8$ \underline {{\mathit{3.49}}} $0.593.420.552.953.980.49
    PSF722.431.812.431.81$ \underline {{\mathit{2.93}}} $3.750.82
    42.350.642.320.60$ \underline {{\mathit{2.72}}} $3.240.52
    62.830.302.780.25$ \underline {{\mathit{3.01}}} $3.560.55
    83.560.413.480.34$ \underline {{\mathit{3.57}}} $4.160.59
    PSF824.943.295.093.55$ \underline {{\mathit{5.22}}} $6.711.49
    44.371.65$ \underline {{\mathit{4.42}}} $1.683.945.350.93
    6$ \underline {{\mathit{4.19}}} $1.014.171.003.275.321.13
    8$ \underline {{\mathit{4.22}}} $0.724.170.712.895.170.95
     | Show Table
    DownLoad: CSV

    Table 9.  ISNR results for Portland head light image

    PSF$\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF122.501.762.611.90$ \underline {{\mathit{3.08}}} $3.980.90
    41.790.541.810.56$ \underline {{\mathit{2.21}}} $2.580.37
    61.790.181.780.17$ \underline {{\mathit{2.18}}} $2.390.21
    82.130.192.100.16$ \underline {{\mathit{2.49}}} $2.630.14
    PSF222.371.652.341.62$ \underline {{\mathit{3.28}}} $3.820.54
    41.890.741.840.712.32$ \underline {{\mathit{2.31}}} $$-0.01$
    61.810.451.740.42$ \underline {{\mathit{2.09}}} $2.600.51
    81.960.361.870.32$ \underline {{\mathit{2.17}}} $2.590.42
    PSF321.710.941.901.16$ \underline {{\mathit{2.57}}} $3.270.70
    41.24-0.041.300.04$ \underline {{\mathit{1.88}}} $2.150.27
    61.44-0.251.45-0.24$ \underline {{\mathit{2.01}}} $2.100.09
    81.92-0.141.90-0.16$ \underline {{\mathit{2.42}}} $2.450.03
    PSF421.230.851.220.84$ \underline {{\mathit{1.86}}} $2.350.49
    41.120.351.100.33$ \underline {{\mathit{1.49}}} $1.700.21
    61.270.141.230.11$ \underline {{\mathit{1.52}}} $1.740.22
    81.560.101.510.06$ \underline {{\mathit{1.74}}} $1.910.17
    PSF521.711.181.741.21$ \underline {{\mathit{2.21}}} $2.850.64
    41.370.361.350.35$ \underline {{\mathit{1.76}}} $1.990.23
    61.500.121.470.09$ \underline {{\mathit{1.84}}} $1.920.08
    81.880.111.830.06$ \underline {{\mathit{2.19}}} $2.270.08
    PSF621.881.291.851.27$ \underline {{\mathit{3.15}}} $3.500.35
    41.510.611.480.59$ \underline {{\mathit{1.93}}} $2.380.45
    61.570.361.520.33$ \underline {{\mathit{1.84}}} $2.150.31
    81.830.291.770.25$ \underline {{\mathit{2.00}}} $2.250.25
    PSF721.641.031.661.06$ \underline {{\mathit{2.17}}} $2.790.62
    41.230.081.210.07$ \underline {{\mathit{1.69}}} $1.940.25
    61.36-0.191.32-0.22$ \underline {{\mathit{1.76}}} $1.770.01
    81.75-0.151.70-0.202.13$ \underline {{\mathit{2.11}}} $$-0.02$
    PSF822.902.073.312.52$ \underline {{\mathit{3.74}}} $4.230.49
    42.411.082.591.19$ \underline {{\mathit{2.70}}} $3.650.95
    62.270.71$ \underline {{\mathit{2.35}}} $0.752.253.160.81
    82.330.54$ \underline {{\mathit{2.35}}} $0.552.013.010.66
     | Show Table
    DownLoad: CSV

    Table 10.  ISNR results for barn and pond image

    PSF$\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF122.311.592.371.68$ \underline {{\mathit{2.92}}} $3.460.54
    41.800.461.800.46$ \underline {{\mathit{2.26}}} $2.650.39
    62.080.222.050.18$ \underline {{\mathit{2.47}}} $2.720.25
    82.670.342.610.29$ \underline {{\mathit{2.96}}} $3.230.27
    PSF222.151.352.131.333.11$ \underline {{\mathit{3.08}}} $$-0.03$
    41.780.581.740.55$ \underline {{\mathit{2.30}}} $2.850.55
    61.890.411.820.37$ \underline {{\mathit{2.19}}} $2.740.55
    82.220.442.130.40$ \underline {{\mathit{2.43}}} $2.850.42
    PSF321.470.721.600.88$ \underline {{\mathit{2.23}}} $2.820.59
    41.22-0.081.25-0.04$ \underline {{\mathit{1.90}}} $2.140.24
    61.73-0.111.72-0.12$ \underline {{\mathit{2.32}}} $2.370.05
    82.480.132.450.09$ \underline {{\mathit{2.94}}} $3.030.09
    PSF420.970.550.950.53$ \underline {{\mathit{1.64}}} $2.160.52
    40.980.180.960.15$ \underline {{\mathit{1.32}}} $1.550.23
    61.310.111.270.08$ \underline {{\mathit{1.55}}} $ 1.700.15
    81.800.211.750.16$ \underline {{\mathit{1.99}}} $2.140.15
    PSF521.661.071.661.09$ \underline {{\mathit{2.10}}} $2.870.77
    41.450.211.420.18$ \underline {{\mathit{1.82}}} $2.210.39
    61.740.041.69-0.01$ \underline {{\mathit{2.10}}} $2.200.10
    82.290.172.220.12$ \underline {{\mathit{2.65}}} $2.840.19
    PSF621.570.931.550.91$ \underline {{\mathit{2.54}}} $3.190.65
    41.350.391.320.37$ \underline {{\mathit{1.74}}} $2.240.50
    61.580.291.530.26$ \underline {{\mathit{1.82}}} $2.270.45
    82.030.371.970.33$ \underline {{\mathit{2.19}}} $2.450.26
    PSF721.450.871.460.89$ \underline {{\mathit{1.90}}} $2.650.75
    41.26-0.051.24-0.08$ \underline {{\mathit{1.74}}} $2.020.28
    61.64-0.221.59-0.26$ \underline {{\mathit{2.06}}} $2.250.19
    82.24-0.032.18-0.09$ \underline {{\mathit{2.65}}} $2.820.17
    PSF822.441.642.671.90$ \underline {{\mathit{3.17}}} $3.680.51
    42.010.792.110.85$ \underline {{\mathit{2.28}}} $3.190.91
    62.040.53$ \underline {{\mathit{2.07}}} $0.541.982.880.81
    8$ \underline {{\mathit{2.30}}} $0.502.290.492.112.930.63
     | Show Table
    DownLoad: CSV

    Table 11.  ISNR results for mountain chalet image

    PSF$\sigma$ADMMSALSAADMM-OSALSA-OGCV-LOursDifference
    PSF123.002.233.222.49$ \underline {{\mathit{3.71}}} $4.781.07
    42.020.852.080.92$ \underline {{\mathit{2.41}}} $3.040.63
    61.720.321.740.33$ \underline {{\mathit{2.03}}} $2.420.39
    81.780.161.770.15$ \underline {{\mathit{2.07}}} $2.340.27
    PSF222.321.792.301.76$ \underline {{\mathit{3.00}}} $3.290.29
    41.900.931.860.91$ \underline {{\mathit{2.32}}} $2.610.29
    61.800.591.750.57$ \underline {{\mathit{1.94}}} $2.400.46
    81.890.431.830.40$ \underline {{\mathit{1.94}}} $2.350.41
    PSF322.151.352.451.70$ \underline {{\mathit{3.11}}} $3.950.84
    41.390.221.530.35$ \underline {{\mathit{2.01}}} $2.340.33
    61.26-0.221.32-0.17$ \underline {{\mathit{1.77}}} $2.040.27
    81.45-0.311.46-0.30$ \underline {{\mathit{1.92}}} $1.950.03
    PSF421.220.891.210.88$ \underline {{\mathit{1.70}}} $2.000.30
    41.130.481.120.46$ \underline {{\mathit{1.31}}} $1.490.18
    61.220.271.190.25$ \underline {{\mathit{1.28}}} $1.530.25
    81.410.181.370.15$ \underline {{\mathit{1.42}}} $1.640.22
    PSF521.881.391.941.45$ \underline {{\mathit{2.59}}} $3.330.74
    41.420.581.420.58$ \underline {{\mathit{1.73}}} $2.060.33
    61.380.221.360.20$ \underline {{\mathit{1.60}}} $1.860.26
    81.550.091.520.06$ \underline {{\mathit{1.74}}} $1.920.18
    PSF621.851.361.851.35$ \underline {{\mathit{2.89}}} $3.590.70
    41.500.741.480.73$ \underline {{\mathit{1.78}}} $2.350.57
    61.500.501.470.48$ \underline {{\mathit{1.63}}} $1.940.31
    81.650.391.610.36$ \underline {{\mathit{1.68}}} $2.000.32
    PSF721.841.261.891.33$ \underline {{\mathit{2.60}}} $3.070.47
    41.270.261.260.26$ \underline {{\mathit{1.67}}} $2.030.36
    61.16-0.141.14-0.16$ \underline {{\mathit{1.48}}} $1.850.37
    81.33-0.251.30-0.28$ \underline {{\mathit{1.62}}} $1.780.16
    PSF823.052.283.482.80$ \underline {{\mathit{3.78}}} $4.120.34
    42.591.30$ \underline {{\mathit{2.79}}} $1.462.773.630.84
    62.410.85$ \underline {{\mathit{2.52}}} $0.912.293.160.64
    82.380.63$ \underline {{\mathit{2.43}}} $0.652.002.970.54
     | Show Table
    DownLoad: CSV
  • [1] M. AfonsoJ. Bioucas-Dias and M. Figueiredo, An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE Trans. Image Process., 20 (2011), 681-695.  doi: 10.1109/TIP.2010.2076294.
    [2] H. Andrew and B. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977.
    [3] J. F. Aujol and G. Gilboa, Constrained and SNR-based solutions for TV-Hilbert space image denoising, J. Math. Imag. Vision, 26 (2006), 217-237.  doi: 10.1007/s10851-006-7801-6.
    [4] S. BabacanR. Molina and A. Katsaggelos, Parameter estimation in TV image restoration using variational distribution approximation, IEEE Trans. Image Process., 17 (2008), 326-339.  doi: 10.1109/TIP.2007.916051.
    [5] S. BabacanR. Molina and A. Katsaggelos, Variational bayesian blind deconvolution using a total variation prior, IEEE Trans. Image Process., 18 (2009), 12-26.  doi: 10.1109/TIP.2008.2007354.
    [6] D. Bertsekas, A. Nedic and E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific, 2003.
    [7] J. Bioucas-Dias, Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors, IEEE Trans. Image Process., 15 (2006), 937-951.  doi: 10.1109/TIP.2005.863972.
    [8] P. Blomgren and T. Chan, Modular solvers for image restoration problems using the discrepancy principle, Numer. Linear Algebra Appl., 9 (2002), 347-358.  doi: 10.1002/nla.278.
    [9] S Bonettini and V Ruggiero, An alternating extragradient method for total variation-based image restoration from Poisson data, Inverse Problems, 27 (2011), 095001, 26pp. doi: 10.1088/0266-5611/27/9/095001.
    [10] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.
    [11] P. Craven and G. Wahba, Smoothing noisy data with spline functions, Numerische Mathematik, 31 (1978), 377-403. 
    [12] I. DaubechiesM. Defrise and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457.  doi: 10.1002/cpa.20042.
    [13] M. Figueiredo, J. M. Bioucas-Dias and M. V. Afonso, Fast frame-based image deconvolution using variable splitting and constrained optimization, In Proc. IEEE/SP 15th Workshop Statistical Signal Processing SSP ’09, (2009), 109-112.
    [14] M. Figueiredo and R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process., 12 (2003), 906-916.  doi: 10.1109/TIP.2003.814255.
    [15] N. Galatsanos and A. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Trans. Image Process., 1 (1992), 322-336. 
    [16] D. Girard, The fast monte-carlo cross-validation and cl procedures-comments, new results and application to image recovery problems, Computational statistics, 10 (1995), 205-258. 
    [17] G. H. GolubM. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.  doi: 10.2307/1268518.
    [18] E. Haber and D. Oldenburg, A gcv based method for nonlinear ill-posed problems, Computational Geosciences, 4 (2000), 41-63.  doi: 10.1023/A:1011599530422.
    [19] P. Hansen and D. O'Leary, The use of the $ L $-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput., 14 (1993), 1487-1503.  doi: 10.1137/0914086.
    [20] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992), 561-580.  doi: 10.1137/1034115.
    [21] H. LiaoF. Li and M. Ng, Selection of regularization parameter in total variation image restoration, J. Opt. Soc. Am. A, 26 (2009), 2311-2320.  doi: 10.1364/JOSAA.26.002311.
    [22] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, Inc., San Diego, CA, 1998.
    [23] V. A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, New York, 1984. Translated from the Russian by A. B. Aries, Translation edited by Z. Nashed. doi: 10.1007/978-1-4612-5280-1.
    [24] M. NgR. Chan and W. Tang, A fast algorithm for deblurring models with Neumann boundary conditions, SIAM J. Sci. Comput., 21 (1999), 851-866.  doi: 10.1137/S1064827598341384.
    [25] M. NgP. Weiss and X. Yuan, Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods, SIAM J. Sci. Comput., 32 (2010), 2710-2736.  doi: 10.1137/090774823.
    [26] N NguyenP. Milanfar and G. Golub, Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement, IEEE Trans. Image Process., 10 (2001), 1299-1308.  doi: 10.1109/83.941854.
    [27] J. P. OliveiraJ. M. Bioucas-Dias and M. A. T. Figueiredo, Adaptive total variation image deblurring: A majorization--minimization approach, Signal Processing, 89 (2009), 1683-1693. 
    [28] F. O'Sullivan and G. Wahba, A cross validated bayesian retrieval algorithm for nonlinear remote sensing experiments, Journal of Computational Physics, 59 (1985), 441-455. 
    [29] S. RamaniZ. LiuJ. RosenJ. Nielsen and J. Fessler, Regularization parameter selection for nonlinear iterative image restoration and mri reconstruction using gcv and sure-based methods, IEEE Trans. Image Process., 21 (2012), 3659-3672.  doi: 10.1109/TIP.2012.2195015.
    [30] L. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [31] A. Tikhonov, Solution of incorrectly formulated problems and regularization method, Soviet Math. Dokl, 4 (1963), 1035-1038. 
    [32] P. WeissL. Blanc-Féraud and G. Aubert, Efficient schemes for total variation minimization under constraints in image processing, SIAM J. Sci. Comput., 31 (2009), 2047-2080.  doi: 10.1137/070696143.
    [33] Y. Wen and R. Chan, Parameter selection for total-variation-based image restoration using discrepancy principle, IEEE Trans. Image Process., 21 (2012), 1770-1781.  doi: 10.1109/TIP.2011.2181401.
    [34] Y. WenR. Chan and A. Yip, A primal-dual method for total variation-based wavelet domain inpainting, IEEE Trans. Image Process., 21 (2012), 106-114.  doi: 10.1109/TIP.2011.2159983.
    [35] M. Zhu, Fast Numerical Algorithms for Total Variation Based Image Restoration, PhD thesis, University of California, Los Angeles, 2008.
    [36] M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, 08-34, 2007.
  • 加载中

Figures(4)

Tables(11)

SHARE

Article Metrics

HTML views(687) PDF downloads(388) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return