Advanced Search
Article Contents
Article Contents

On finding a buried obstacle in a layered medium via the time domain enclosure method

Abstract Full Text(HTML) Related Papers Cited by
  • An inverse obstacle problem for the wave equation in a two layered medium is considered. It is assumed that the unknown obstacle is penetrable and embedded in the lower half-space. The wave as a solution of the wave equation is generated by an initial data whose support is in the upper half-space and observed at the same place as the support over a finite time interval. From the observed wave an indicator function in the time domain enclosure method is constructed. It is shown that, one can find some information about the geometry of the obstacle together with the qualitative property in the asymptotic behavior of the indicator function.

    Mathematics Subject Classification: Primary: 35L05, 35P25, 35B40, 35R30; Secondary: 74J25.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, 1976.
    [2] E. J. Baranoski, Through-wall imaging: Historical perspective and future directions, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, (2008). doi: 10.1109/ICASSP.2008.4518824.
    [3] L. M. Brekhovskikh, Waves in Layered Media, Translated from the Russian by D. Lieberman, Academic Press, New York, 1960.
    [4] D. J. DanielsD. J. Gunton and H. F. Scott, Introduction to subsurface radar, IEE Proceedings F Communications, Radar and Signal Processing, 135 (1988), 278-320.  doi: 10.1049/ip-f-1.1988.0038.
    [5] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Sciences and Technology, Evolution problems Ⅰ, Vol. 5, Springer-Verlag, Berlin, 1992. doi: 10.1007/978-3-642-58090-1.
    [6] F. Delbary, K. Erhard, R. Kress, R. Potthast and J. Schulz, Inverse electromagnetic scattering in a two-layered medium with an application to mine detection, Invesre Problems, 24 (2008), 015002, 18pp. doi: 10.1088/0266-5611/24/1/015002.
    [7] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983. doi: 10.1007/978-3-642-96750-4.
    [8] M. Ikehata, Size estimation of inclusion, J. Inv. Ill-Posed Problems, 6 (1998), 127-140.  doi: 10.1515/jiip.1998.6.2.127.
    [9] M. Ikehata, Extracting discontinuity in a heat conductive body. One-space dimensional case, Applicable Analysis, 86 (2007), 963-1005.  doi: 10.1080/00036810701460834.
    [10] M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval, Inverse Problems, 26 (2010), 055010 (20pp). doi: 10.1088/0266-5611/26/5/055010.
    [11] M. Ikehata, The enclosure method for inverse obstacle scattering problems with dynamical data over a finite time interval: Ⅱ. Obstacles with a dissipative boundary or finite refractive index and back-scattering data, Inverse Problems, 28 (2012), 045010 (29pp). doi: 10.1088/0266-5611/28/4/045010.
    [12] M. Ikehata, On finding an obstacle embedded in the rough background medium via the enclosure method in the time domain, Inverse Problems, 31 (2015), 085011(21pp). doi: 10.1088/0266-5611/31/8/085011.
    [13] M. Ikehata, New development of the enclosure method for inverse obstacle scattering, Chapter 6 in Inverse Problems and Computational Mechanics (eds. L. Marin, L. Munteanu, V. Chiroiu), Editura Academiei, Bucharest, Romania, 2 (2016), 123-147.
    [14] M. Ikehata and M. Kawashita, The enclosure method for the heat equation, Inverse Problems, 25 (2009), 075005, 10pp. doi: 10.1088/0266-5611/25/7/075005.
    [15] M. Ikehata and M. Kawashita, An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method, Inverse Problems and Imaging, 8 (2014), 1073-1116.  doi: 10.3934/ipi.2014.8.1073.
    [16] J. B. KellerR. M. Lewis and B. D. Seckler, Asymptotic solution of some diffraction problems, Commun. Pure Appl. Math., 9 (1956), 207-265.  doi: 10.1002/cpa.3160090205.
    [17] J. Li, P. Li, H. Liu and X. Liu, Recovering multiscale buried anomalies in a two-layered medium, Inverse Problems, 31 (2015), 105006, 28pp. doi: 10.1088/0266-5611/31/10/105006.
    [18] X. Liu and B. Zhang, A uniqueness result for the inverse electromagnetic scattering problem in a two-layered medium, Inverse Problems, 26 (2010), 105007, 11pp. doi: 10.1088/0266-5611/26/10/105007.
  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views(1412) PDF downloads(228) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint