[1]
|
J.-F. Aujol and A. Chambolle, Dual norms and image decomposition models, International Journal of Computer Vision, 63 (2005), 85-104.
doi: 10.1007/s11263-005-4948-3.
|
[2]
|
J.-F. Aujol, G. Gilboa, T. Chan and S. Osher, Structure-texture image decomposition-modeling, algorithms, and parameter selection, International Journal of Computer Vision, 67 (2006), 111-136.
doi: 10.1007/s11263-006-4331-z.
|
[3]
|
M. Benning, F. Knoll, C.-B. Schönlieb and T. Valkonen, Preconditioned admm with nonlinear operator constraint, in IFIP Conference on System Modeling and Optimization, (2015), 117–126.
doi: 10.1007/978-3-319-55795-3_10.
|
[4]
|
M. Bertalmío, V. Caselles and E. Provenzi, Issues about retinex theory and contrast enhancement, International Journal of Computer Vision, 83 (2009), 101-119.
doi: 10.1007/s11263-009-0221-5.
|
[5]
|
M. Bertalmío, V. Caselles, E. Provenzi and A. Rizzi, Perceptual color correction through variational techniques, IEEE Transactions on Image Processing, 16 (2007), 1058-1072.
doi: 10.1109/TIP.2007.891777.
|
[6]
|
A. Bovik, Handbook of Image and Video Processing, Academic Press, 2000.
|
[7]
|
A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, 76 (1997), 167-188.
doi: 10.1007/s002110050258.
|
[8]
|
H. Chang, M. K. Ng, W. Wang and T. Zeng, Retinex image enhancement via a learned dictionary, Optical Engineering, 54 (2015), 013107.
doi: 10.1117/1.OE.54.1.013107.
|
[9]
|
H. Chang, W. Huang, C. Wu, S. Huang, C. Guan, S. Sekar, K. K. Bhakoo and Y. Duan, A new variational method for bias correction and its applications to rodent brain extraction, IEEE Transactions on Medical Imaging, 36 (2017), 721-733.
doi: 10.1109/TMI.2016.2636026.
|
[10]
|
T. J. Cooper and F. A. Baqai, Analysis and extensions of the frankle-mccann retinex algorithm, Journal of Electronic Imaging, 13 (2004), 85-93.
doi: 10.1117/1.1636182.
|
[11]
|
Y. Duan, H. Chang, W. Huang and J. Zhou, Simultaneous bias correction and image segmentation via L0 regularized mumford-shah model, in 2014 IEEE International Conference on Image Processing (ICIP), (2014), 6–10.
doi: 10.1109/ICIP.2014.7025000.
|
[12]
|
Y. Duan, H. Chang, W. Huang, J. Zhou, Z. Lu and C. Wu, The $L_0$ regularized mumford-shah model for bias correction and segmentation of medical images, IEEE Transactions on Image Processing, 24 (2015), 3927-3938.
doi: 10.1109/TIP.2015.2451957.
|
[13]
|
M. Elad, Retinex by two bilateral filters, in International Conference on Scale-Space Theories in Computer Vision, Springer, Berlin, (2005), 217–229.
doi: 10.1007/11408031_19.
|
[14]
|
O. Faugeras, Digital color image processing within the framework of a human visual model, IEEE Transactions on Acoustics, Speech, and Signal Processing, 27 (1979), 380-393.
doi: 10.1109/TASSP.1979.1163262.
|
[15]
|
T. Goldstein and S. Osher, The split bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[16]
|
Y.-M. Huang, M. K. Ng and Y.-W. Wen, A new total variation method for multiplicative noise removal, SIAM Journal on Imaging Sciences, 2 (2009), 20-40.
doi: 10.1137/080712593.
|
[17]
|
D. J. Jobson, Z.-U. Rahman and G. A. Woodell, Properties and performance of a center/surround retinex, IEEE Transactions on Image Processing, 6 (1997), 451-462.
doi: 10.1109/83.557356.
|
[18]
|
R. Kimmel, M. Elad, D. Shaked, R. Keshet and I. Sobel, A variational framework for retinex, International Journal of Computer Vision, 52 (2003), 7-23.
doi: 10.1023/A:1022314423998.
|
[19]
|
E. H. Land and J. J. McCann, Lightness and retinex theory, Journal of the Optical Society of America, 61 (1971), 1-11.
doi: 10.1364/JOSA.61.000001.
|
[20]
|
E. H. Land, Recent advances in retinex theory and some implications for cortical computations: color vision and the natural image, Proceedings of the National Academy of Sciences, 80 (1983), 5163-5169.
doi: 10.1073/pnas.80.16.5163.
|
[21]
|
E. H. Land, An alternative technique for the computation of the designator in the retinex theory of color vision, Proceedings of the National Academy of Sciences, 83 (1986), 3078-3080.
doi: 10.1073/pnas.83.10.3078.
|
[22]
|
T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by poisson noise, Journal of Mathematical Imaging and Vision, 27 (2007), 257-263.
doi: 10.1007/s10851-007-0652-y.
|
[23]
|
J. Liang and X. Zhang, Retinex by higher order total variation ${L}^1$ decomposition, Journal of Mathematical Imaging and Vision, 52 (2015), 345-355.
doi: 10.1007/s10851-015-0568-x.
|
[24]
|
L. Liu, Z.-F. Pang and Y. Duan, A novel variational model for retinex in presence of severe noises, in 2017 IEEE International Conference on Image Processing (ICIP), (2017), 3490–3494.
doi: 10.1109/ICIP.2017.8296931.
|
[25]
|
W. Ma and S. Osher, A tv bregman iterative model of retinex theory, Inverse Problems and Imaging, 6 (2012), 697-708.
doi: 10.3934/ipi.2012.6.697.
|
[26]
|
J. McCann, Lessons learned from mondrians applied to real images and color gamuts, in Proceedings of the IST/SID 7th Color Imaging Conference, (1999), 1–8.
|
[27]
|
J. M. Morel, A. B. Petro and C. Sbert, A pde formalization of retinex theory, IEEE Transactions on Image Processing, 19 (2010), 2825-2837.
doi: 10.1109/TIP.2010.2049239.
|
[28]
|
M. K. Ng and W. Wang, A total variation model for retinex, SIAM Journal on Imaging Sciences, 4 (2011), 345-365.
doi: 10.1137/100806588.
|
[29]
|
R. Palma-Amestoy, E. Provenzi, M. Bertalmío and V. Caselles, A perceptually inspired variational framework for color enhancement, IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (2009), 458-474.
doi: 10.1109/TPAMI.2008.86.
|
[30]
|
K. Papafitsoros and C.-B. Schönlieb, A combined first and second order variational approach for image reconstruction, Journal of Mathematical Imaging and Vision, 48 (2014), 308-338.
doi: 10.1007/s10851-013-0445-4.
|
[31]
|
E. Provenzi, D. Marini, L. De Carli and A. Rizzi, Mathematical definition and analysis of the retinex algorithm, Journal of the Optical Society of America A, 22 (2005), 2613-2621.
doi: 10.1364/JOSAA.22.002613.
|
[32]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[33]
|
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM Journal on Imaging Sciences, 1 (2008), 248-272.
doi: 10.1137/080724265.
|
[34]
|
C. Wu and X.-C. Tai, Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models, SIAM Journal on Imaging Sciences, 3 (2010), 300-339.
doi: 10.1137/090767558.
|
[35]
|
C. Wu, J. Zhang and X.-C. Tai, Augmented lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging, 5 (2011), 237-261.
doi: 10.3934/ipi.2011.5.237.
|
[36]
|
X. Zhang, M. Burger and S. Osher, A unified primal-dual algorithm framework based on bregman iteration, Journal of Scientific Computing, 46 (2011), 20-46.
doi: 10.1007/s10915-010-9408-8.
|
[37]
|
D. Zosso, G. Tran and S. Osher, Non-local retinex--a unifying framework and beyond, SIAM Journal on Imaging Sciences, 8 (2015), 787-826.
doi: 10.1137/140972664.
|