The composite $\ell_0$ function serves as a sparse regularizer in many applications. The algorithmic difficulty caused by the composite $\ell_0$ regularization (the $\ell_0$ norm composed with a linear mapping) is usually bypassed through approximating the $\ell_0$ norm. We consider in this paper capped $\ell_p$ approximations with $p>0$ for the composite $\ell_0$ regularization problem. The capped $\ell_p$ function converges to the $\ell_0$ norm pointwisely as the approximation parameter tends to infinity. We first establish the existence of optimal solutions to the composite $\ell_0$ regularization problem and its capped $\ell_p$ approximation problem under conditions that the data fitting function is asymptotically level stable and bounded below. Asymptotically level stable functions cover a rich class of data fitting functions encountered in practice. We then prove that the capped $\ell_p$ problem asymptotically approximates the composite $\ell_0$ problem if the data fitting function is a level bounded function composed with a linear mapping. We further show that if the data fitting function is the indicator function on an asymptotically linear set or the $\ell_0$ norm composed with an affine mapping, then the composite $\ell_0$ problem and its capped $\ell_p$ approximation problem share the same optimal solution set provided that the approximation parameter is large enough.
Citation: |
[1] |
H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized gauss-seidel methods, Mathematical Programming, 137 (2013), 91-129.
doi: 10.1007/s10107-011-0484-9.![]() ![]() ![]() |
[2] |
A. Auslender and M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities, Springer, 2003.
![]() ![]() |
[3] |
T. Blumensath and M. E. Davies, Iterative hard thresholding for compressive sensing, Applied and Computational Harmonic Analysis, 27 (2009), 265-274.
doi: 10.1016/j.acha.2009.04.002.![]() ![]() ![]() |
[4] |
J. Bolte, S. Sabach and M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, 146 (2014), 459-494.
doi: 10.1007/s10107-013-0701-9.![]() ![]() ![]() |
[5] |
E. J. Candes, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, 346 (2008), 589-592.
doi: 10.1016/j.crma.2008.03.014.![]() ![]() ![]() |
[6] |
E. J. Candes, M. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted $\ell_1$ minimization, Journal of Fourier Analysis and Applications, 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x.![]() ![]() ![]() |
[7] |
R. Chartrand and V. Staneva, Restricted isometry properties and nonconvex compressive sensing, Inverse Problems, 24 (2008), 035020, 14 pp.
doi: 10.1088/0266-5611/24/3/035020.![]() ![]() ![]() |
[8] |
E. Chouzenoux, A. Jezierska, J.-C. Pesquet and H. Talbot, A majorize-minimize subspace approach for l(2)-l(0) image regularization, SIAM Journal on Imaging Sciences, 6 (2013), 563-591.
doi: 10.1137/11085997X.![]() ![]() ![]() |
[9] |
D.-Q. Dai, L. Shen, Y. Xu and N. Zhang, Noisy 1-bit compressive sensing: Models and algorithms, Applied and Computational Harmonic Analysis, 40 (2016), 1-32.
doi: 10.1016/j.acha.2014.12.001.![]() ![]() ![]() |
[10] |
G. Davis, S. Mallat and M. Avellaneda, Adaptive greedy approximations, Constructive Approximation, 13 (1997), 57-98.
doi: 10.1007/BF02678430.![]() ![]() ![]() |
[11] |
B. Dong, H. Ji, J. Li, Z. Shen and Y. Xu, Wavelet frame based blind image inpainting, Applied and Computational Harmonic Analysis, 32 (2012), 268-279.
doi: 10.1016/j.acha.2011.06.001.![]() ![]() ![]() |
[12] |
B. Dong and Y. Zhang, An efficient algorithm for $\ell_0$ minimization in wavelet frame based image restoration, Journal of Scientific Computing, 54 (2013), 350-368.
doi: 10.1007/s10915-012-9597-4.![]() ![]() ![]() |
[13] |
M. Elad, P. Milanfar and R. Rubinstein, Analysis versus synthesis in signal priors, Inverse Problems, 23 (2007), 947-968.
doi: 10.1088/0266-5611/23/3/007.![]() ![]() ![]() |
[14] |
M. Elad, J.-L. Starck, P. Querre and D. L. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis ({MCA}), Applied and Computational Harmonic Analysis, 19 (2005), 340-358.
doi: 10.1016/j.acha.2005.03.005.![]() ![]() ![]() |
[15] |
J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96 (2001), 1348-1360.
doi: 10.1198/016214501753382273.![]() ![]() ![]() |
[16] |
M. Fornasier and R. Ward, terative thresholding meets free-discontinuity problems, Foundations of Computational Mathematics, 10 (2010), 527-567.
doi: 10.1007/s10208-010-9071-3.![]() ![]() ![]() |
[17] |
S. Foucart and M. J. Lai, Sparsest solutions of underdetermined linear systems via $\ell_q$-minimization for 0 < q ≤ 1, Applied and Computational Harmonic Analysis, 26 (2009), 395-407.
doi: 10.1016/j.acha.2008.09.001.![]() ![]() ![]() |
[18] |
Z. Lu, Iterative reweighted minimization methods for regularized unconstrained nonlinear programming, Mathematical Programming, 147 (2014), 277-307.
doi: 10.1007/s10107-013-0722-4.![]() ![]() ![]() |
[19] |
B. K. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.
doi: 10.1137/S0097539792240406.![]() ![]() ![]() |
[20] |
D. Needell and J. A. Tropp, Cosamp: Iterative signal recovery from incomplete and inaccurate samples, Applied and Computational Harmonic Analysis, 26 (2009), 301-321.
doi: 10.1016/j.acha.2008.07.002.![]() ![]() ![]() |
[21] |
M. Nikolova, M. K. Ng and C.-P. Tam, Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction, IEEE Transactions on Image Processing, 19 (2010), 3073-3088.
doi: 10.1109/TIP.2010.2052275.![]() ![]() ![]() |
[22] |
J. Portilla, Image restoration through l0 analysis-based sparse optimization in tight frames, in IEEE International Conference on Image Processing, 2009, 3909–3912.
doi: 10.1109/ICIP.2009.5413975.![]() ![]() |
[23] |
R. T. Rockafellar and R. J. B. Wets, Variational Analysis, Springer, 2004.
doi: 10.1007/978-3-642-02431-3.![]() ![]() |
[24] |
L. Shen, Y. Xu and X. Zeng, Wavelet inpainting with the $\ell_0$ sparse regularization, Applied and Computational Harmonic Analysis, 41 (2016), 26-53.
doi: 10.1016/j.acha.2015.03.001.![]() ![]() ![]() |
[25] |
Y. Shen and S. Li, Sparse signals recovery from noisy measurements by orthogonal matching pursuit, Inverse Problems and Imaging, 9 (2015), 231-238.
doi: 10.3934/ipi.2015.9.231.![]() ![]() ![]() |
[26] |
J. A. Tropp, Just relax: Convex programming methods for identifying sparse signals in noise, IEEE Transactions on Information Theory, 52 (2006), 1030-1051.
doi: 10.1109/TIT.2005.864420.![]() ![]() ![]() |
[27] |
J. A. Tropp and A. C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Transactions on Information Theory, 53 (2007), 4655-4666.
doi: 10.1109/TIT.2007.909108.![]() ![]() ![]() |
[28] |
J. Trzasko and A. Manduca, Highly undersampled magnetic resonance image reconstruction via homotopic l(0) -minimization, IEEE Transactions on Medical Imaging, 28 (2009), 106-121.
doi: 10.1109/TMI.2008.927346.![]() ![]() |
[29] |
C. Wang and L. Zeng, Error bounds and stability in the $\ell_0$ regularized for ct reconstruction from small projections, Inverse Problems and Imaging, 10 (2016), 829-853.
doi: 10.3934/ipi.2016023.![]() ![]() ![]() |
[30] |
M. Yan, Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting, SIAM Journal on Imaging Sciences, 6 (2013), 1227-1245.
doi: 10.1137/12087178X.![]() ![]() ![]() |
[31] |
C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Annals of Statistics, 38 (2010), 894-942.
doi: 10.1214/09-AOS729.![]() ![]() ![]() |
[32] |
N. Zhang and Q. Li, On optimal solutions of the constrained $\ell_0$ minimization and its penalty problem, Inverse Problems, 33 (2017), 025010, 28pp.
doi: 10.1088/1361-6420/33/2/025010.![]() ![]() ![]() |
[33] |
T. Zhang, Analysis of multi-stage convex relaxation for sparse regularization, Journal of Machine Learning Research, 11 (2010), 1081-1107.
![]() ![]() |
[34] |
Y. Zhang, B. Dong and Z. Lu, $\ell_0$ minimization for wavelet frame based image restoration, Mathematics of Computation, 82 (2013), 995-1015.
doi: 10.1090/S0025-5718-2012-02631-7.![]() ![]() ![]() |