We study the X-ray transform $I$ of symmetric tensor fields on a smooth convex bounded domain $Ω\subset{\mathbb R}^n$. The main result is the stability estimate $\|^{s}f\|_{L^2}≤ C\|If\|_{H^{1/2}}$, where $^{s}f$ is the solenoidal part of the tensor field $f$. The proof is based on a comparison of the Dirichlet integrals for the exterior and interior Dirichlet problems and on a generalization of the Korn inequality to symmetric tensor fields of arbitrary rank.
Citation: |
[1] |
G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, Paris, 1972.
![]() ![]() |
[2] |
G. Fichera, Existence Theorems in Elasticity, Springer, 1972.
![]() |
[3] |
K. O. Friedrichs, On the boundary value problems of the theory of elasticity and Korn's inequality, Ann. Math., 48 (1947), 441-471.
doi: 10.2307/1969180.![]() ![]() ![]() |
[4] |
J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité, Bull. de la Roy. des Sci. de Liège, 31 (1962), 182-191.
![]() ![]() |
[5] |
L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1, Springer, 1983.
doi: 10.1007/978-3-642-96750-4.![]() ![]() ![]() |
[6] |
V. A. Kondrat'ev and O. A. Oleinik, Boundary value problems for the system of elasticity theory in unbounded domains. Korn's inequalities, Russian Mathematical Surveys, 43 (1988), 65-120.
doi: 10.1070/RM1988v043n05ABEH001945.![]() ![]() |
[7] |
A. Korn, Solution générale du problème d'équilibre dans la théorie de l'élasticité dans le cas où les efforts sont donnés à la surface, in Ann. Fac. Sci. Univ. Toulouse, 10 (1908), 165–269.
doi: 10.5802/afst.251.![]() ![]() ![]() |
[8] |
W. Lionheart and V. Sharafutdinov, Reconstruction algorithm for the linearized polarization tomography problem with incomplete data, in Imaging Microstructures: Mathematical and Computational Challenges, (eds. H. Ammari and Hyeonbae Kang), Contemporary Mathematics, 494 (2009), 137–159.
doi: 10.1090/conm/494/09648.![]() ![]() ![]() |
[9] |
S. G. Mikhlin, Variational Methods in Mathematical Physics, Oxford, Pergamon Press, 1964.
![]() ![]() |
[10] |
F. Natterer, The Mathematics of Computerized Tomography, John Willey & Sons, 1986.
![]() ![]() |
[11] |
L. E. Payne and H. F. Weinberger, On Korn's inequality, Arch. Rat. Mech. Anal., 8 (1961), 89-98.
doi: 10.1007/BF00277432.![]() ![]() ![]() |
[12] |
L. N. Pestov and V. A. Sharafutdinov, Integral geometry of tensor fields on a manifold of negative curvature, Siberian Math. J., 29 (1988), 427-441.
doi: 10.1007/BF00969652.![]() ![]() ![]() |
[13] |
Yu. G. Reshetnyak, Estimates for certain differential operators with finite-dimensional kernel, Siberian Math. J., 11 (1970), 315-326.
![]() |
[14] |
V. A. Sharafutdinov, Integral Geometry of Tensor Fields, VSP, Utrecht, The Netherlands, 1994.
doi: 10.1515/9783110900095.![]() ![]() ![]() |
[15] |
V. Sharafutdinov, The Reshetnyak formula and Natterer stability estimates in tensor tomography, Inverse Problems, 33 (2017), 025002 (20 pp).
doi: 10.1088/1361-6420/33/2/025002.![]() ![]() ![]() |
[16] |
V. Sharafutdinov, M. Skokan and G. Uhlmann, Regularity of ghosts in tensor tomography, J. Geom. Anal., 15 (2005), 499-542.
doi: 10.1007/BF02930983.![]() ![]() ![]() |
[17] |
V. Sharafutdinov and J. Wang J, Tomography of small residual stresses, Inverse Problems, 28 (2012), 065017, 17 pp.
doi: 10.1088/0266-5611/28/6/065017.![]() ![]() ![]() |
[18] |
P. Stefanov, A sharp stability estimate in tensor tomography, in J. of Physics: Conference Series, 124 (2008), 012007.
doi: 10.1088/1742-6596/124/1/012007.![]() ![]() |
[19] |
M. E. Taylor, Partial Differential Equations I. Basic Theory, Texts in Applied Mathematics, 23. Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4684-9320-7.![]() ![]() ![]() |