December  2018, 12(6): 1411-1428. doi: 10.3934/ipi.2018059

Inverse source problems in electrodynamics

1. 

Beijing Computational Science Research Center, Building 9, East Zone, ZPark Ⅱ, No.10 Xibeiwang East Road, Haidian District, Beijing 100193, China

2. 

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA

3. 

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

4. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

* Corresponding author: Yue Zhao

Received  January 2018 Revised  July 2018 Published  October 2018

Fund Project: The research of PL was supported in part by the NSF grant DMS-1151308. The work of GH is supported by the NSFC grant (No. 11671028) and NSAF grant (No. U1530401). The research of XL is supported by the NNSF of China under grant 11571355 and the Youth Innovation Promotion Association, CAS

This paper concerns inverse source problems for the time-dependent Maxwell equations. The electric current density is assumed to be the product of a spatial function and a temporal function. We prove uniqueness and stability in determining the spatial or temporal function from the electric field, which is measured on a sphere or at a point over a finite time interval.

Citation: Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems & Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059
References:
[1]

R. Albanese and P. Monk, The inverse source problem for Maxwell's equations, Inverse Problems, 22 (2006), 1023-1035. doi: 10.1088/0266-5611/22/3/018. Google Scholar

[2]

A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency sparse data, arXiv: 1712.02654v1, 2017.Google Scholar

[3]

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press: Princeton, 2015. doi: 10.1515/9781400866625. Google Scholar

[4]

H. AmmariG. Bao and J. Flemming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382. doi: 10.1137/S0036139900373927. Google Scholar

[5]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861. doi: 10.1137/S0036141098343604. Google Scholar

[6]

Yu. E. AnikonovJ. Cheng and M. Yamamoto, A uniqueness result in an inverse hyperbolic problem with analyticity, European J. Appl. Math., 15 (2004), 533-543. doi: 10.1017/S0956792504005649. Google Scholar

[7]

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93. doi: 10.1088/0266-5611/15/2/022. Google Scholar

[8]

G. Bao, G. Hu, Y. Kian and T. Yin, Inverse source problems in elastodynamics, Inverse Problems, 34 (2018), 045009, 31pp. doi: 10.1088/1361-6420/aaaf7e. Google Scholar

[9]

G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp. doi: 10.1088/0266-5611/31/9/093001. Google Scholar

[10]

G. Bao, P. Li and Y. Zhao, Stability in the inverse source problem for elastic and electromagnetic waves with multi-frequencies, preprint.Google Scholar

[11]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465. doi: 10.1016/j.jde.2010.08.013. Google Scholar

[12]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Computational Mathematics, 26 (2008), 284-296. Google Scholar

[13]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030. Google Scholar

[14]

X. DengX. Cai and J. Zou, A parallel space-time domain decomposition method for unsteady source inversion problems, Inverse Probl. Imaging, 9 (2015), 1069-1091. doi: 10.3934/ipi.2015.9.1069. Google Scholar

[15]

X. DengX. Cai and J. Zou, Two-level space-time domain decomposition methods for three-dimensional unsteady inverse source problems, J. Sci. Comput., 67 (2016), 860-882. doi: 10.1007/s10915-015-0109-1. Google Scholar

[16]

A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042. doi: 10.1109/TAP.1982.1142902. Google Scholar

[17]

M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005, 20pp. doi: 10.1088/0266-5611/25/11/115005. Google Scholar

[18]

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, IEEE press, Prentice-Hall, 1973. Google Scholar

[19]

K.-H. HauerL. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967. doi: 10.1088/0266-5611/21/3/010. Google Scholar

[20]

V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1989. doi: 10.1090/surv/034. Google Scholar

[21]

J. Jackson, Classical Electrodynamics, Second edition, John Wiley and Sons, Inc., New York-London-Sydney, 1975. Google Scholar

[22]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596. doi: 10.1088/0266-5611/8/4/009. Google Scholar

[23]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887. doi: 10.1016/j.jmaa.2017.01.074. Google Scholar

[24]

P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759. doi: 10.3934/ipi.2017035. Google Scholar

[25]

S. Li, Carleman estimates for second order hyperbolic systems in anisotropic cases and an inverse source problem. Part Ⅱ: an inverse source problem, Applicable Analysis, 94 (2015), 2287-2307. doi: 10.1080/00036811.2014.986847. Google Scholar

[26]

S. Li and M. Yamamoto, An inverse source problem for Maxwell's equations in anisotropic media, Applicable Analysis, 84 (2005), 1051-1067. doi: 10.1080/00036810500047725. Google Scholar

[27]

K. LiuY. Xu and J. Zou, A multilevel sampling method for detecting sources in a stratified ocean waveguide, J. Comput. Appl. Math., 309 (2017), 95-110. doi: 10.1016/j.cam.2016.06.039. Google Scholar

[28]

E. Marx and D. Maystre, Dyadic Green functions for the time-dependent wave equation, J. Math. Phys., 23 (1982), 1047-1056. doi: 10.1063/1.525493. Google Scholar

[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, New York, 2000.Google Scholar

[30]

R. Nevels and J. Jeong, Time domain coupled field dyadic Green function solution for Maxwell's equations, IEEE Transactions on Antennas and Propagation, 56 (2008), 2761-2764. doi: 10.1109/TAP.2008.927574. Google Scholar

[31]

P. OlaL. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7. Google Scholar

[32]

A. G. Ramm and E. Somersalo, Electromagnetic inverse problem with surface measurements at low frequencies, Inverse Problems, 5 (1989), 1107-1116. doi: 10.1088/0266-5611/5/6/016. Google Scholar

[33]

V. G. Romanov and S. I. Kabanikhin, Inverse Problems for Maxwell's Equations, VSP, Utrecht, 1994. doi: 10.1515/9783110900101. Google Scholar

[34]

M. Yamamoto, On an inverse problem of determining source terms in Maxwell's equations with a single measurement, Inverse Probl. Tomograph. Image Process, New York, Plenum Press, 15 (1998), 241–256. Google Scholar

[35]

Y. Zhao and P. Li, Stability on the one-dimensional inverse source scattering problem in a two-layered medium, Applicable Analysis, to appear.Google Scholar

show all references

References:
[1]

R. Albanese and P. Monk, The inverse source problem for Maxwell's equations, Inverse Problems, 22 (2006), 1023-1035. doi: 10.1088/0266-5611/22/3/018. Google Scholar

[2]

A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency sparse data, arXiv: 1712.02654v1, 2017.Google Scholar

[3]

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press: Princeton, 2015. doi: 10.1515/9781400866625. Google Scholar

[4]

H. AmmariG. Bao and J. Flemming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382. doi: 10.1137/S0036139900373927. Google Scholar

[5]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861. doi: 10.1137/S0036141098343604. Google Scholar

[6]

Yu. E. AnikonovJ. Cheng and M. Yamamoto, A uniqueness result in an inverse hyperbolic problem with analyticity, European J. Appl. Math., 15 (2004), 533-543. doi: 10.1017/S0956792504005649. Google Scholar

[7]

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93. doi: 10.1088/0266-5611/15/2/022. Google Scholar

[8]

G. Bao, G. Hu, Y. Kian and T. Yin, Inverse source problems in elastodynamics, Inverse Problems, 34 (2018), 045009, 31pp. doi: 10.1088/1361-6420/aaaf7e. Google Scholar

[9]

G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp. doi: 10.1088/0266-5611/31/9/093001. Google Scholar

[10]

G. Bao, P. Li and Y. Zhao, Stability in the inverse source problem for elastic and electromagnetic waves with multi-frequencies, preprint.Google Scholar

[11]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465. doi: 10.1016/j.jde.2010.08.013. Google Scholar

[12]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Computational Mathematics, 26 (2008), 284-296. Google Scholar

[13]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030. Google Scholar

[14]

X. DengX. Cai and J. Zou, A parallel space-time domain decomposition method for unsteady source inversion problems, Inverse Probl. Imaging, 9 (2015), 1069-1091. doi: 10.3934/ipi.2015.9.1069. Google Scholar

[15]

X. DengX. Cai and J. Zou, Two-level space-time domain decomposition methods for three-dimensional unsteady inverse source problems, J. Sci. Comput., 67 (2016), 860-882. doi: 10.1007/s10915-015-0109-1. Google Scholar

[16]

A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042. doi: 10.1109/TAP.1982.1142902. Google Scholar

[17]

M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005, 20pp. doi: 10.1088/0266-5611/25/11/115005. Google Scholar

[18]

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, IEEE press, Prentice-Hall, 1973. Google Scholar

[19]

K.-H. HauerL. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967. doi: 10.1088/0266-5611/21/3/010. Google Scholar

[20]

V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1989. doi: 10.1090/surv/034. Google Scholar

[21]

J. Jackson, Classical Electrodynamics, Second edition, John Wiley and Sons, Inc., New York-London-Sydney, 1975. Google Scholar

[22]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596. doi: 10.1088/0266-5611/8/4/009. Google Scholar

[23]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887. doi: 10.1016/j.jmaa.2017.01.074. Google Scholar

[24]

P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759. doi: 10.3934/ipi.2017035. Google Scholar

[25]

S. Li, Carleman estimates for second order hyperbolic systems in anisotropic cases and an inverse source problem. Part Ⅱ: an inverse source problem, Applicable Analysis, 94 (2015), 2287-2307. doi: 10.1080/00036811.2014.986847. Google Scholar

[26]

S. Li and M. Yamamoto, An inverse source problem for Maxwell's equations in anisotropic media, Applicable Analysis, 84 (2005), 1051-1067. doi: 10.1080/00036810500047725. Google Scholar

[27]

K. LiuY. Xu and J. Zou, A multilevel sampling method for detecting sources in a stratified ocean waveguide, J. Comput. Appl. Math., 309 (2017), 95-110. doi: 10.1016/j.cam.2016.06.039. Google Scholar

[28]

E. Marx and D. Maystre, Dyadic Green functions for the time-dependent wave equation, J. Math. Phys., 23 (1982), 1047-1056. doi: 10.1063/1.525493. Google Scholar

[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, New York, 2000.Google Scholar

[30]

R. Nevels and J. Jeong, Time domain coupled field dyadic Green function solution for Maxwell's equations, IEEE Transactions on Antennas and Propagation, 56 (2008), 2761-2764. doi: 10.1109/TAP.2008.927574. Google Scholar

[31]

P. OlaL. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653. doi: 10.1215/S0012-7094-93-07014-7. Google Scholar

[32]

A. G. Ramm and E. Somersalo, Electromagnetic inverse problem with surface measurements at low frequencies, Inverse Problems, 5 (1989), 1107-1116. doi: 10.1088/0266-5611/5/6/016. Google Scholar

[33]

V. G. Romanov and S. I. Kabanikhin, Inverse Problems for Maxwell's Equations, VSP, Utrecht, 1994. doi: 10.1515/9783110900101. Google Scholar

[34]

M. Yamamoto, On an inverse problem of determining source terms in Maxwell's equations with a single measurement, Inverse Probl. Tomograph. Image Process, New York, Plenum Press, 15 (1998), 241–256. Google Scholar

[35]

Y. Zhao and P. Li, Stability on the one-dimensional inverse source scattering problem in a two-layered medium, Applicable Analysis, to appear.Google Scholar

Figure 1.  (left): A Gaussian-modulated sinusoidal pulse function $\chi$ with $\omega = 6$, $\sigma = 1.6$, $\tau = 3$; (right): Fourier spectrum of $\chi$
[1]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems & Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[2]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[3]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[4]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems & Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[5]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[6]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[7]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[8]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[9]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[10]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[11]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems & Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[12]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[13]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

[14]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[15]

Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029

[16]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations & Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

[17]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[18]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[19]

Cleverson R. da Luz, Gustavo Alberto Perla Menzala. Uniform stabilization of anisotropic Maxwell's equations with boundary dissipation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 547-558. doi: 10.3934/dcdss.2009.2.547

[20]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-28. doi: 10.3934/dcdsb.2019181

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (105)
  • HTML views (209)
  • Cited by (0)

Other articles
by authors

[Back to Top]