December  2018, 12(6): 1411-1428. doi: 10.3934/ipi.2018059

Inverse source problems in electrodynamics

1. 

Beijing Computational Science Research Center, Building 9, East Zone, ZPark Ⅱ, No.10 Xibeiwang East Road, Haidian District, Beijing 100193, China

2. 

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907, USA

3. 

Institute of Applied Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

4. 

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

* Corresponding author: Yue Zhao

Received  January 2018 Revised  July 2018 Published  October 2018

Fund Project: The research of PL was supported in part by the NSF grant DMS-1151308. The work of GH is supported by the NSFC grant (No. 11671028) and NSAF grant (No. U1530401). The research of XL is supported by the NNSF of China under grant 11571355 and the Youth Innovation Promotion Association, CAS.

This paper concerns inverse source problems for the time-dependent Maxwell equations. The electric current density is assumed to be the product of a spatial function and a temporal function. We prove uniqueness and stability in determining the spatial or temporal function from the electric field, which is measured on a sphere or at a point over a finite time interval.

Citation: Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059
References:
[1]

R. Albanese and P. Monk, The inverse source problem for Maxwell's equations, Inverse Problems, 22 (2006), 1023-1035.  doi: 10.1088/0266-5611/22/3/018.

[2]

A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency sparse data, arXiv: 1712.02654v1, 2017.

[3]

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press: Princeton, 2015. doi: 10.1515/9781400866625.

[4]

H. AmmariG. Bao and J. Flemming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382.  doi: 10.1137/S0036139900373927.

[5]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861.  doi: 10.1137/S0036141098343604.

[6]

Yu. E. AnikonovJ. Cheng and M. Yamamoto, A uniqueness result in an inverse hyperbolic problem with analyticity, European J. Appl. Math., 15 (2004), 533-543.  doi: 10.1017/S0956792504005649.

[7]

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93.  doi: 10.1088/0266-5611/15/2/022.

[8]

G. Bao, G. Hu, Y. Kian and T. Yin, Inverse source problems in elastodynamics, Inverse Problems, 34 (2018), 045009, 31pp. doi: 10.1088/1361-6420/aaaf7e.

[9]

G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp. doi: 10.1088/0266-5611/31/9/093001.

[10]

G. Bao, P. Li and Y. Zhao, Stability in the inverse source problem for elastic and electromagnetic waves with multi-frequencies, preprint.

[11]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465.  doi: 10.1016/j.jde.2010.08.013.

[12]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Computational Mathematics, 26 (2008), 284-296. 

[13]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804.  doi: 10.1016/j.jde.2015.11.030.

[14]

X. DengX. Cai and J. Zou, A parallel space-time domain decomposition method for unsteady source inversion problems, Inverse Probl. Imaging, 9 (2015), 1069-1091.  doi: 10.3934/ipi.2015.9.1069.

[15]

X. DengX. Cai and J. Zou, Two-level space-time domain decomposition methods for three-dimensional unsteady inverse source problems, J. Sci. Comput., 67 (2016), 860-882.  doi: 10.1007/s10915-015-0109-1.

[16]

A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042.  doi: 10.1109/TAP.1982.1142902.

[17]

M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005, 20pp. doi: 10.1088/0266-5611/25/11/115005.

[18]

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, IEEE press, Prentice-Hall, 1973.

[19]

K.-H. HauerL. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967.  doi: 10.1088/0266-5611/21/3/010.

[20]

V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1989. doi: 10.1090/surv/034.

[21]

J. Jackson, Classical Electrodynamics, Second edition, John Wiley and Sons, Inc., New York-London-Sydney, 1975.

[22]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.

[23]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.  doi: 10.1016/j.jmaa.2017.01.074.

[24]

P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759.  doi: 10.3934/ipi.2017035.

[25]

S. Li, Carleman estimates for second order hyperbolic systems in anisotropic cases and an inverse source problem. Part Ⅱ: an inverse source problem, Applicable Analysis, 94 (2015), 2287-2307.  doi: 10.1080/00036811.2014.986847.

[26]

S. Li and M. Yamamoto, An inverse source problem for Maxwell's equations in anisotropic media, Applicable Analysis, 84 (2005), 1051-1067.  doi: 10.1080/00036810500047725.

[27]

K. LiuY. Xu and J. Zou, A multilevel sampling method for detecting sources in a stratified ocean waveguide, J. Comput. Appl. Math., 309 (2017), 95-110.  doi: 10.1016/j.cam.2016.06.039.

[28]

E. Marx and D. Maystre, Dyadic Green functions for the time-dependent wave equation, J. Math. Phys., 23 (1982), 1047-1056.  doi: 10.1063/1.525493.

[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, New York, 2000.

[30]

R. Nevels and J. Jeong, Time domain coupled field dyadic Green function solution for Maxwell's equations, IEEE Transactions on Antennas and Propagation, 56 (2008), 2761-2764.  doi: 10.1109/TAP.2008.927574.

[31]

P. OlaL. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653.  doi: 10.1215/S0012-7094-93-07014-7.

[32]

A. G. Ramm and E. Somersalo, Electromagnetic inverse problem with surface measurements at low frequencies, Inverse Problems, 5 (1989), 1107-1116.  doi: 10.1088/0266-5611/5/6/016.

[33]

V. G. Romanov and S. I. Kabanikhin, Inverse Problems for Maxwell's Equations, VSP, Utrecht, 1994. doi: 10.1515/9783110900101.

[34]

M. Yamamoto, On an inverse problem of determining source terms in Maxwell's equations with a single measurement, Inverse Probl. Tomograph. Image Process, New York, Plenum Press, 15 (1998), 241–256.

[35]

Y. Zhao and P. Li, Stability on the one-dimensional inverse source scattering problem in a two-layered medium, Applicable Analysis, to appear.

show all references

References:
[1]

R. Albanese and P. Monk, The inverse source problem for Maxwell's equations, Inverse Problems, 22 (2006), 1023-1035.  doi: 10.1088/0266-5611/22/3/018.

[2]

A. Alzaalig, G. Hu, X. Liu and J. Sun, Fast acoustic source imaging using multi-frequency sparse data, arXiv: 1712.02654v1, 2017.

[3]

H. Ammari, E. Bretin, J. Garnier, H. Kang, H. Lee and A. Wahab, Mathematical Methods in Elasticity Imaging, Princeton University Press: Princeton, 2015. doi: 10.1515/9781400866625.

[4]

H. AmmariG. Bao and J. Flemming, An inverse source problem for Maxwell's equations in magnetoencephalography, SIAM J. Appl. Math., 62 (2002), 1369-1382.  doi: 10.1137/S0036139900373927.

[5]

H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal., 31 (2000), 836-861.  doi: 10.1137/S0036141098343604.

[6]

Yu. E. AnikonovJ. Cheng and M. Yamamoto, A uniqueness result in an inverse hyperbolic problem with analyticity, European J. Appl. Math., 15 (2004), 533-543.  doi: 10.1017/S0956792504005649.

[7]

S. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), R41-R93.  doi: 10.1088/0266-5611/15/2/022.

[8]

G. Bao, G. Hu, Y. Kian and T. Yin, Inverse source problems in elastodynamics, Inverse Problems, 34 (2018), 045009, 31pp. doi: 10.1088/1361-6420/aaaf7e.

[9]

G. Bao, P. Li, J. Lin and F. Triki, Inverse scattering problems with multi-frequencies, Inverse Problems, 31 (2015), 093001, 21pp. doi: 10.1088/0266-5611/31/9/093001.

[10]

G. Bao, P. Li and Y. Zhao, Stability in the inverse source problem for elastic and electromagnetic waves with multi-frequencies, preprint.

[11]

G. BaoJ. Lin and F. Triki, A multi-frequency inverse source problem, J. Differential Equations, 249 (2010), 3443-3465.  doi: 10.1016/j.jde.2010.08.013.

[12]

Z. Chen and J.-C. Nédélec, On Maxwell equations with the transparent boundary condition, J. Computational Mathematics, 26 (2008), 284-296. 

[13]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problem with many frequencies, J. Differential Equations, 260 (2016), 4786-4804.  doi: 10.1016/j.jde.2015.11.030.

[14]

X. DengX. Cai and J. Zou, A parallel space-time domain decomposition method for unsteady source inversion problems, Inverse Probl. Imaging, 9 (2015), 1069-1091.  doi: 10.3934/ipi.2015.9.1069.

[15]

X. DengX. Cai and J. Zou, Two-level space-time domain decomposition methods for three-dimensional unsteady inverse source problems, J. Sci. Comput., 67 (2016), 860-882.  doi: 10.1007/s10915-015-0109-1.

[16]

A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Trans. Antennas Propag., 30 (1982), 1034-1042.  doi: 10.1109/TAP.1982.1142902.

[17]

M. Eller and N. Valdivia, Acoustic source identification using multiple frequency information, Inverse Problems, 25 (2009), 115005, 20pp. doi: 10.1088/0266-5611/25/11/115005.

[18]

L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, IEEE press, Prentice-Hall, 1973.

[19]

K.-H. HauerL. Kühn and R. Potthast, On uniqueness and non-uniqueness for current reconstruction from magnetic fields, Inverse Problems, 21 (2005), 955-967.  doi: 10.1088/0266-5611/21/3/010.

[20]

V. Isakov, Inverse Source Problems, AMS, Providence, RI, 1989. doi: 10.1090/surv/034.

[21]

J. Jackson, Classical Electrodynamics, Second edition, John Wiley and Sons, Inc., New York-London-Sydney, 1975.

[22]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.

[23]

P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.  doi: 10.1016/j.jmaa.2017.01.074.

[24]

P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759.  doi: 10.3934/ipi.2017035.

[25]

S. Li, Carleman estimates for second order hyperbolic systems in anisotropic cases and an inverse source problem. Part Ⅱ: an inverse source problem, Applicable Analysis, 94 (2015), 2287-2307.  doi: 10.1080/00036811.2014.986847.

[26]

S. Li and M. Yamamoto, An inverse source problem for Maxwell's equations in anisotropic media, Applicable Analysis, 84 (2005), 1051-1067.  doi: 10.1080/00036810500047725.

[27]

K. LiuY. Xu and J. Zou, A multilevel sampling method for detecting sources in a stratified ocean waveguide, J. Comput. Appl. Math., 309 (2017), 95-110.  doi: 10.1016/j.cam.2016.06.039.

[28]

E. Marx and D. Maystre, Dyadic Green functions for the time-dependent wave equation, J. Math. Phys., 23 (1982), 1047-1056.  doi: 10.1063/1.525493.

[29]

J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems, Springer, New York, 2000.

[30]

R. Nevels and J. Jeong, Time domain coupled field dyadic Green function solution for Maxwell's equations, IEEE Transactions on Antennas and Propagation, 56 (2008), 2761-2764.  doi: 10.1109/TAP.2008.927574.

[31]

P. OlaL. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617-653.  doi: 10.1215/S0012-7094-93-07014-7.

[32]

A. G. Ramm and E. Somersalo, Electromagnetic inverse problem with surface measurements at low frequencies, Inverse Problems, 5 (1989), 1107-1116.  doi: 10.1088/0266-5611/5/6/016.

[33]

V. G. Romanov and S. I. Kabanikhin, Inverse Problems for Maxwell's Equations, VSP, Utrecht, 1994. doi: 10.1515/9783110900101.

[34]

M. Yamamoto, On an inverse problem of determining source terms in Maxwell's equations with a single measurement, Inverse Probl. Tomograph. Image Process, New York, Plenum Press, 15 (1998), 241–256.

[35]

Y. Zhao and P. Li, Stability on the one-dimensional inverse source scattering problem in a two-layered medium, Applicable Analysis, to appear.

Figure 1.  (left): A Gaussian-modulated sinusoidal pulse function $\chi$ with $\omega = 6$, $\sigma = 1.6$, $\tau = 3$; (right): Fourier spectrum of $\chi$
[1]

Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems and Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297

[2]

El Mustapha Ait Ben Hassi, Salah-Eddine Chorfi, Lahcen Maniar, Omar Oukdach. Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2021, 10 (4) : 837-859. doi: 10.3934/eect.2020094

[3]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems and Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[4]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 1-21. doi: 10.3934/dcdss.2021006

[5]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[6]

Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159

[7]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems and Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[8]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[9]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems and Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[10]

Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

W. Wei, H. M. Yin. Global solvability for a singular nonlinear Maxwell's equations. Communications on Pure and Applied Analysis, 2005, 4 (2) : 431-444. doi: 10.3934/cpaa.2005.4.431

[13]

Björn Birnir, Niklas Wellander. Homogenized Maxwell's equations; A model for ceramic varistors. Discrete and Continuous Dynamical Systems - B, 2006, 6 (2) : 257-272. doi: 10.3934/dcdsb.2006.6.257

[14]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[15]

Masahiro Yamamoto. Uniqueness for inverse problem of determining fractional orders for time-fractional advection-diffusion equations. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022017

[16]

Victor Isakov. On uniqueness in the inverse conductivity problem with local data. Inverse Problems and Imaging, 2007, 1 (1) : 95-105. doi: 10.3934/ipi.2007.1.95

[17]

Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems and Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029

[18]

Guanghui Hu, Yavar Kian. Uniqueness and stability for the recovery of a time-dependent source in elastodynamics. Inverse Problems and Imaging, 2020, 14 (3) : 463-487. doi: 10.3934/ipi.2020022

[19]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[20]

Matthias Eller. Stability of the anisotropic Maxwell equations with a conductivity term. Evolution Equations and Control Theory, 2019, 8 (2) : 343-357. doi: 10.3934/eect.2019018

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (296)
  • HTML views (295)
  • Cited by (6)

Other articles
by authors

[Back to Top]