\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A partial inverse problem for the Sturm-Liouville operator on the lasso-graph

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • The Sturm-Liouville operator with singular potentials on the lasso graph is considered. We suppose that the potential is known a priori on the boundary edge, and recover the potential on the loop from a part of the spectrum and some additional data. We prove the uniqueness theorem and provide a constructive algorithm for the solution of this partial inverse problem.

    Mathematics Subject Classification: 34A55, 34B05, 34B09, 34B45, 34L20, 34L40, 47E05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Lasso graph

    Figure 2.  Plots for equation (7), $m = 5$

  • [1] G. Berkolaiko and P. Kuchment, Introduction to Quantum Graphs, Amer. Math. Soc., Providence, RI, 2013.
    [2] N. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Problems, 33 (2017), 115010, 19pp. doi: 10.1088/1361-6420/aa8cb5.
    [3] N. P. Bondarenko, A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph, Anal. Math. Phys., 8 (2018), 155-168.  doi: 10.1007/s13324-017-0172-x.
    [4] N. P. Bondarenko, Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with mixed boundary conditions, J. Inverse Ill-Posed Probl., 26 (2018), 1-12.  doi: 10.1515/jiip-2017-0001.
    [5] N. P. Bondarenko, A 2-edge partial inverse problem for the Sturm-Liouville operators with singular potentials on a star-shaped graph, Tamkang J. Math., 49 (2018), 49-66.  doi: 10.5556/j.tkjm.49.2018.2425.
    [6] G. FreilingM. Ignatiev and V. Yurko, An inverse spectral problem for Sturm-Liouville operators with singular potentials on star-type graph, Proc. Symp. Pure Math., 77 (2008), 397-408.  doi: 10.1090/pspum/077/2459883.
    [7] G. Freiling and V. Yurko, Inverse Sturm-Liouville problems and their applications, Nova Science Publishers, Inc., Huntington, NY, 2001.
    [8] X. He and H. Volkmer, Riesz bases of solutions of Sturm-Liouville equations, J. Fourier Anal. Appl., 7 (2001), 297-307.  doi: 10.1007/BF02511815.
    [9] H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34 (1978), 676-680.  doi: 10.1137/0134054.
    [10] R. O. Hryniv and Ya. V. Mykytyuk, Transformation operators for Sturm-Liouville operators with singular potentials, Math. Phys. Anal. Geom., 7 (2004), 119-149.  doi: 10.1023/B:MPAG.0000024658.58535.74.
    [11] R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 19 (2003), 665-684.  doi: 10.1088/0266-5611/19/3/312.
    [12] R. O. Hryniv and Ya. V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials, Ⅱ, Reconstruction by Two Spectra, in: V. Kadets, W. Zelazko (Eds.), Functional Analysis and Its Applications, in: North-Holland Math. Stud., vol. 197, NorthHolland Publishing, Amsterdam, (2004), 97-114. doi: 10.1016/S0304-0208(04)80159-2.
    [13] R. O. Hryniv and Ya. V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 20 (2004), 1423-1444.  doi: 10.1088/0266-5611/20/5/006.
    [14] P. Kuchment, Quantum graphs. Some basic structures, Waves Random Media, 14 (2004), S107-S128.  doi: 10.1088/0959-7174/14/1/014.
    [15] P. Kuchment, Graph models for waves in thin structures, Waves in Random Media, 12 (2002), R1-R24.  doi: 10.1088/0959-7174/12/4/201.
    [16] P. Kurasov, Inverse scattering for lasso graph, J. Math. Phys., 54 (2013), 04210314, 14pp. doi: 10.1063/1.4799034.
    [17] B. M. Levitan, Inverse Sturm-Liouville Problems, Nauka, Moscow, 1984 (Russian); English transl., VNU Sci. Press, Utrecht, 1987.
    [18] V. A. Marchenko, Sturm-Liouville Operators and their Applications, Naukova Dumka, Kiev, 1977 (Russian); English transl., Birkhauser, 1986.
    [19] V. Marchenko, K. Mochizuki and I. Trooshin, Inverse scattering on a graph, containing circle, Analytic Methods of Analysis and Differ, Equations: AMADE 2006, 237-243. Cambridge Sci. Publ., Cambridge, 2008.
    [20] V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of the Hill operator, Mat. Sbornik, 97 (1975), 540-606 (Russian); English transl. in Math. USSR Sbornik, 26 (1975), 493-554.
    [21] K. Mochizuki and I. Trooshin, On the scattering on a loop shaped graph, Evolution Equations of hyperbolic and Schroedinger Type, 227-245, Progr. Math., 301, Birkhauser/Springer. Basel A6, Basel, 2012. doi: 10.1007/978-3-0348-0454-7_12.
    [22] V. N. Pivovarchik, Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal., 32 (2000), 801-819.  doi: 10.1137/S0036141000368247.
    [23] Yu. V. Pokorny, O. M. Penkin and V. L. Pryadiev, et al., Differential equations on geometrical graphs, Fizmatlit, Moscow, 2004 (Russian).
    [24] J. Pöschel and E. Trubowitz, Inverse Spectral Theory, New York, Academic Press, 1987.
    [25] A. M. Savchuk, On the eigenvalues and eigenfunctions of the Sturm-Liouville operator with a singular potential, Mathematical Notes, 69 (2001), 245-252.  doi: 10.1023/A:1002880520696.
    [26] I. V. Stankevich, An inverse problem of spectral analysis for Hill's equations, Doklady Akad. Nauk SSSR, 192 (1970), 34-37 (Russian). 
    [27] C.-F. Yang, Inverse spectral problems for the Sturm-Liouville operator on a $d$-star graph, J. Math. Anal. Appl., 365 (2010), 742-749.  doi: 10.1016/j.jmaa.2009.12.016.
    [28] C.-F. Yang and X.-P. Yang, Uniqueness theorems from partial information of the potential on a graph, J. Inverse Ill-Posed Prob., 19 (2011), 631-641.  doi: 10.1515/JIIP.2011.059.
    [29] V. A. Yurko, Inverse nodal problems for the Sturm-Liouville differential operators on a star-type graph, Siberian Math. J., 50 (2009), 373-378.  doi: 10.1007/s11202-009-0043-2.
    [30] V. A. Yurko, Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2 (2008), 543-553.  doi: 10.7153/oam-02-34.
    [31] V. A. Yurko, Inverse spectral problems for differential operators on spatial networks, Russian Mathematical Surveys, 71 (2016), 539-584.  doi: 10.4213/rm9709.
    [32] V. A. Yurko, Inverse spectral problems for differential operators on arbitrary compact graphs, J. Inverse and Ill-Posed Probl., 18 (2010), 245-261.  doi: 10.1515/JIIP.2010.009.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(329) PDF downloads(289) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return