[1]
|
A. Almansa, C. Ballester, V. Caselles and G. Haro, A TV based restoration model with local constraints, Journal of Scientific Computing, 34 (2008), 209-236.
doi: 10.1007/s10915-007-9160-x.
|
[2]
|
M. Artina, M. Fornasier and F. Solombrino, Linearly constrained nonsmooth and nonconvex minimization, SIAM Journal on Optimization, 23 (2013), 1904-1937.
doi: 10.1137/120869079.
|
[3]
|
H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized GaussSeidel methods, Mathematical Programming, 137 (2013), 91-129.
doi: 10.1007/s10107-011-0484-9.
|
[4]
|
G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise, SIAM Journal on Applied Mathematics, 68 (2008), 925-946.
doi: 10.1137/060671814.
|
[5]
|
J. Bolte, A. Daniilidis and A. Lewis, The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM Journal on Optimization, 17 (2007), 1205-1223.
doi: 10.1137/050644641.
|
[6]
|
S. Boyd, Alternating direction method of multipliers, in Talk at NIPS Workshop on Optimization and Machine Learning, 2011.
|
[7]
|
K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM Journal on Imaging Sciences, 3 (2010), 492-526.
doi: 10.1137/090769521.
|
[8]
|
E. J. Candes, M. B. Wakin and S. P. Boyd, Enhancing sparsity by reweighted $\ell_1$ minimization, Journal of Fourier analysis and applications, 14 (2008), 877-905.
doi: 10.1007/s00041-008-9045-x.
|
[9]
|
A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, 76 (1997), 167-188.
doi: 10.1007/s002110050258.
|
[10]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[11]
|
T. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM Journal on Scientific Computing, 22 (2000), 503-516.
doi: 10.1137/S1064827598344169.
|
[12]
|
D.-Q. Chen and L.-Z. Cheng, Spatially adapted regularization parameter selection based on the local discrepancy function for Poissonian image deblurring, Inverse Problems, 28 (2011), 015004, 24pp.
doi: 10.1088/0266-5611/28/1/015004.
|
[13]
|
D.-Q. Chen and L.-Z. Cheng, Spatially adapted total variation model to remove multiplicative noise, IEEE Transactions on Image Processing, 21 (2012), 1650-1662.
doi: 10.1109/TIP.2011.2172801.
|
[14]
|
D.-Q. Chen and L.-Z. Cheng, Fast linearized alternating direction minimization algorithm with adaptive parameter selection for multiplicative noise removal, Journal of Computational and Applied Mathematics, 257 (2014), 29-45.
doi: 10.1016/j.cam.2013.08.012.
|
[15]
|
Y. Chen, W. Feng, R. Ranftl, H. Qiao and T. Pock, A higher-order MRF based variational model for multiplicative noise reduction, IEEE Signal Processing Letters, 21 (2014), 1370-1374.
|
[16]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3-D transfor-mdomain collaborative filtering, IEEE Transactions on Image Processing, 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[17]
|
A. Dauwe, B. Goossens, H. Q. Luong and W. Philips, A fast non-local image denoising algorithm, in Electronic Imaging 2008, International Society for Optics and Photonics, 2008, 681210-681210.
|
[18]
|
Y. Dong, M. Hintermüller and M. M. Rincon-Camacho, Automated regularization parameter selection in multi-scale total variation models for image restoration, Journal of Mathematical Imaging and Vision, 40 (2011), 82-104.
doi: 10.1007/s10851-010-0248-9.
|
[19]
|
Y. Dong and T. Zeng, A convex variational model for restoring blurred images with multiplicative noise, SIAM Journal on Imaging Sciences, 6 (2013), 1598-1625.
doi: 10.1137/120870621.
|
[20]
|
W. Feng, H. Lei and Y. Gao, Speckle reduction via higher order total variation approach, IEEE Transactions on Image Processing, 23 (2014), 1831-1843.
doi: 10.1109/TIP.2014.2308432.
|
[21]
|
P. Getreuer, Total variation deconvolution using split Bregman, Image Processing On Line, 2 (2012), 158-174.
|
[22]
|
P. Getreuer, M. Tong and L. A. Vese, A variational model for the restoration of MR images corrupted by blur and Rician noise, in International Symposium on Visual Computing, Springer, 2011,686-698
|
[23]
|
G. Gilboa, N. Sochen and Y. Y. Zeevi, Variational denoising of partly textured images by spatially varying constraints, IEEE Transactions on Image Processing, 15 (2006), 2281-2289.
|
[24]
|
T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM journal on Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[25]
|
M. L. Gonçalves, J. G. Melo and R. D. Monteiro, Convergence rate bounds for a proximal ADMM with over-relaxation stepsize parameter for solving nonconvex linearly constrained problems, arXiv preprint, arXiv: 1702.01850.
|
[26]
|
K. Guo, D. Han and T.-T. Wu, Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints, International Journal of Computer Mathematics, 94 (2017), 1653-1669.
doi: 10.1080/00207160.2016.1227432.
|
[27]
|
W. Guo, J. Qin and W. Yin, A new detail-preserving regularization scheme, SIAM Journal on Imaging Sciences, 7 (2014), 1309-1334.
doi: 10.1137/120904263.
|
[28]
|
M. Kang, M. Kang and M. Jung, Nonconvex higher-order regularization based Rician noise removal with spatially adaptive parameters, Journal of Visual Communication and Image Representation, 32 (2015), 180-193.
|
[29]
|
M. Kang, S. Yun and H. Woo, Two-level convex relaxed variational model for multiplicative denoising, SIAM Journal on Imaging Sciences, 6 (2013), 875-903.
doi: 10.1137/11086077X.
|
[30]
|
F. Knoll, K. Bredies, T. Pock and R. Stollberger, Second order total generalized variation (tgv) for MRI, Magnetic Resonance in Medicine, 65 (2011), 480-491.
|
[31]
|
F. Knoll, G. Schultz, K. Bredies, D. Gallichan, M. Zaitsev, J. Hennig and R. Stollberger, Reconstruction of undersampled radial PatLoc imaging using total generalized variation, Magnetic Resonance in Medicine, 70 (2013), 40-52.
|
[32]
|
D. Krishnan and R. Fergus, Fast image deconvolution using hyper-Laplacian priors, in Advances in Neural Information Processing Systems, 2009, 1033-1041.
|
[33]
|
A. Lanza, S. Morigi and F. Sgallari, Convex image denoising via non-convex regularization, in International Conference on Scale Space and Variational Methods in Computer Vision, Springer, 9087 (2015), 666-677.
doi: 10.1007/978-3-319-18461-6_53.
|
[34]
|
T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, Journal of Mathematical Imaging and Vision, 27 (2007), 257-263.
doi: 10.1007/s10851-007-0652-y.
|
[35]
|
J.-S. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE transactions on pattern analysis and machine intelligence, 2 (1980), 165-168.
|
[36]
|
F. Li, M. K. Ng and C. Shen, Multiplicative noise removal with spatially varying regularization parameters, SIAM Journal on Imaging Sciences, 3 (2010), 1-20.
doi: 10.1137/090748421.
|
[37]
|
F. Li, C. Shen, J. Fan and C. Shen, Image restoration combining a total variational filter and a fourth-order filter, Journal of Visual Communication and Image Representation, 18 (2007), 322-330.
|
[38]
|
G. Liu, T.-Z. Huang and J. Liu, High-order TVL1-based images restoration and spatially adapted regularization parameter selection, Computers & Mathematics with Applications, 67 (2014), 2015-2026.
doi: 10.1016/j.camwa.2014.04.008.
|
[39]
|
R. W. Liu, L. Shi, W. Huang, J. Xu, S. C. H. Yu and D. Wang, Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters, Magnetic resonance imaging, 32 (2014), 702-720.
|
[40]
|
S. Łojasiewicz, Sur la géométrie semi-et sous-analytique, Ann. Inst. Fourier, 43 (1993), 1575-1595.
doi: 10.5802/aif.1384.
|
[41]
|
J. Lu, L. Shen, C. Xu and Y. Xu, Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Applied and Computational Harmonic Analysis, 41 (2016), 518-539.
doi: 10.1016/j.acha.2015.10.003.
|
[42]
|
V. Luminita and T. F. Chan, Reduced non-convex functional approximations for imag restoration & segmentation, UCLA CAM Website 97-56, 1997.
|
[43]
|
M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Transactions on image processing, 12 (2003), 1579-1590.
|
[44]
|
H. Na, M. Kang, M. Jung and M. Kang, An exp model with spatially adaptive regularization parameters for multiplicative noise removal, Journal of Scientific Computing, 75 (2018), 478-509.
doi: 10.1007/s10915-017-0550-4.
|
[45]
|
M. Nikolova, M. K. Ng and C.-P. Tam, Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction, IEEE Transactions on Image Processing, 19 (2010), 3073-3088.
doi: 10.1109/TIP.2010.2052275.
|
[46]
|
P. Ochs, A. Dosovitskiy, T. Brox and T. Pock, An iterated $\ell_1$ algorithm for non-smooth nonconvex optimization in computer vision, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, 1759-1766.
|
[47]
|
P. Ochs, A. Dosovitskiy, T. Brox and T. Pock, On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision, SIAM Journal on Imaging Sciences, 8 (2015), 331-372.
doi: 10.1137/140971518.
|
[48]
|
S. Oh, H. Woo, S. Yun and M. Kang, Non-convex hybrid total variation for image denoising, Journal of Visual Communication and Image Representation, 24 (2013), 332-344.
|
[49]
|
A. Parekh and I. W. Selesnick, Convex denoising using non-convex tight frame regularization, IEEE Signal Processing Letters, 22 (2015), 1786-1790.
|
[50]
|
S. Parrilli, M. Poderico, C. V. Angelino and L. Verdoliva, A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage, IEEE Transactions on Geoscience and Remote Sensing, 50 (2012), 606-616.
|
[51]
|
P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.
|
[52]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[53]
|
S. Setzer, Operator splittings, Bregman methods and frame shrinkage in image processing, International Journal of Computer Vision, 92 (2011), 265-280.
doi: 10.1007/s11263-010-0357-3.
|
[54]
|
M.-G. Shama, T.-Z. Huang, J. Liu and S. Wang, A convex total generalized variation regularized model for multiplicative noise and blur removal, Applied Mathematics and Computation, 276 (2016), 109-121.
|
[55]
|
J. Shi and S. Osher, A nonlinear inverse scale space method for a convex multiplicative noise model, SIAM Journal on Imaging Sciences, 1 (2008), 294-321.
doi: 10.1137/070689954.
|
[56]
|
S. Sra, Scalable nonconvex inexact proximal splitting, in Advances in Neural Information Processing Systems, 2012,530-538.
|
[57]
|
C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Computer Vision, 1998. Sixth International Conference on, IEEE, 1998,839-846.
|
[58]
|
L. van den Dries, Tame topology and $o$-minimal structures, Bull. of the AMS, 37 (2000), 351-357.
|
[59]
|
Y. Wang, W. Yin and J. Zeng, Global convergence of ADMM in nonconvex nonsmooth optimization, in Journal of Scientific Computing, Springer, 2018, 1-35, URL https://link.springer.com/article/10.1007/s10915-018-0757-z.
|
[60]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE transactions on image processing, 13 (2004), 600-612.
|
[61]
|
A. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, Journal of the American Mathematical Society, 9 (1996), 1051-1094.
doi: 10.1090/S0894-0347-96-00216-0.
|
[62]
|
H. Woo and S. Yun, Proximal linearized alternating direction method for multiplicative denoising, SIAM Journal on Scientific Computing, 35 (2013), B336-B358.
doi: 10.1137/11083811X.
|
[63]
|
J. Yang and Y. Zhang, Alternating direction algorithms for $\ell_1$-problems in compressive sensing, SIAM Journal on Scientific Computing, 33 (2011), 250-278.
doi: 10.1137/090777761.
|