
-
Previous Article
A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data
- IPI Home
- This Issue
-
Next Article
Note on Calderón's inverse problem for measurable conductivities
Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line
Department of Mathematical Sciences, P.O. Box 3000, FI-90014 University of Oulu, Finland |
We consider an inverse scattering problem of recovering the unknown coefficients of quasi-linearly perturbed biharmonic operator on the line. These unknown complex-valued coefficients are assumed to satisfy some regularity conditions on their nonlinearity, but they can be discontinuous or singular in their space variable. We prove that the inverse Born approximation can be used to recover some essential information about the unknown coefficients from the knowledge of the reflection coefficient. This information is the jump discontinuities and the local singularities of the coefficients.
References:
[1] |
T. Aktosun and V. G. Papanicolaou, Time evolution of the scattering data for a fourth-order linear differential operator,
Inverse Problems, 24 (2008), 055013, 14 pp.
doi: 10.1088/0266-5611/24/5/055013. |
[2] |
F. Gazzola, H.-C. Grunau and G. Sweers,
Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-12245-3. |
[3] |
L. Hörmander,
The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin Heidelberg, 2003.
doi: 10.1007/978-3-642-61497-2. |
[4] |
K. Iwasaki,
Scattering theory for 4th order differential operators: Ⅰ, Japan. J. Math., 14 (1988), 1-57.
doi: 10.4099/math1924.14.1. |
[5] |
K. Iwasaki,
Scattering theory for 4th order differential operators: Ⅱ, Japan. J. Math., 14 (1988), 59-96.
doi: 10.4099/math1924.14.1. |
[6] |
R. Kanwal,
Generalized Functions: Theory and Technique, Academic Press, New York, 1983. |
[7] |
B. Pausader, Scattering for the beam equation in low dimensions, preprint, arXiv: 0903.3777v2. Google Scholar |
[8] |
V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line,
Journal of Physics A: Mathematical and General, 42 (2009), 332002, 7pp.
doi: 10.1088/1751-8113/42/33/332002. |
[9] |
V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D,
Journal of mathematical physics, 53 (2012), 123522, 16pp.
doi: 10.1063/1.4769825. |
[10] |
E. C. Titchmarsh,
Introduction to the Theory of Fourier Integrals, Third edition. Chelsea Publishing Co., New York, 1986. |
[11] |
T. Tyni and M. Harju,
Inverse backscattering problem for perturbations of biharmonic operator,
Inverse Problems, 33 (2017), 105002, 20pp.
doi: 10.1088/1361-6420/aa873e. |
[12] |
T. Tyni, M. Harju and V. Serov,
Recovery of singularities in fourth-order operator on the line from limited data,
Inverse Problems, 32 (2016), 075001, 22pp.
doi: 10.1088/0266-5611/32/7/075001. |
[13] |
T. Tyni and V. Serov,
Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Prob. Imag., 12 (2018), 205-227.
doi: 10.3934/ipi.2018008. |
[14] |
E. Zeidler,
Applied Functional Analysis, Springer-Verlag, New York, 1995. |
show all references
References:
[1] |
T. Aktosun and V. G. Papanicolaou, Time evolution of the scattering data for a fourth-order linear differential operator,
Inverse Problems, 24 (2008), 055013, 14 pp.
doi: 10.1088/0266-5611/24/5/055013. |
[2] |
F. Gazzola, H.-C. Grunau and G. Sweers,
Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-12245-3. |
[3] |
L. Hörmander,
The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin Heidelberg, 2003.
doi: 10.1007/978-3-642-61497-2. |
[4] |
K. Iwasaki,
Scattering theory for 4th order differential operators: Ⅰ, Japan. J. Math., 14 (1988), 1-57.
doi: 10.4099/math1924.14.1. |
[5] |
K. Iwasaki,
Scattering theory for 4th order differential operators: Ⅱ, Japan. J. Math., 14 (1988), 59-96.
doi: 10.4099/math1924.14.1. |
[6] |
R. Kanwal,
Generalized Functions: Theory and Technique, Academic Press, New York, 1983. |
[7] |
B. Pausader, Scattering for the beam equation in low dimensions, preprint, arXiv: 0903.3777v2. Google Scholar |
[8] |
V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line,
Journal of Physics A: Mathematical and General, 42 (2009), 332002, 7pp.
doi: 10.1088/1751-8113/42/33/332002. |
[9] |
V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D,
Journal of mathematical physics, 53 (2012), 123522, 16pp.
doi: 10.1063/1.4769825. |
[10] |
E. C. Titchmarsh,
Introduction to the Theory of Fourier Integrals, Third edition. Chelsea Publishing Co., New York, 1986. |
[11] |
T. Tyni and M. Harju,
Inverse backscattering problem for perturbations of biharmonic operator,
Inverse Problems, 33 (2017), 105002, 20pp.
doi: 10.1088/1361-6420/aa873e. |
[12] |
T. Tyni, M. Harju and V. Serov,
Recovery of singularities in fourth-order operator on the line from limited data,
Inverse Problems, 32 (2016), 075001, 22pp.
doi: 10.1088/0266-5611/32/7/075001. |
[13] |
T. Tyni and V. Serov,
Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Prob. Imag., 12 (2018), 205-227.
doi: 10.3934/ipi.2018008. |
[14] |
E. Zeidler,
Applied Functional Analysis, Springer-Verlag, New York, 1995. |

[1] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[2] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[3] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[4] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[5] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[6] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
[7] |
Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254 |
[8] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[9] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
[10] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[11] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[12] |
Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260 |
[13] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279 |
[14] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[15] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[16] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[17] |
Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020389 |
[18] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[19] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[20] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]