February  2019, 13(1): 159-175. doi: 10.3934/ipi.2019009

Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line

Department of Mathematical Sciences, P.O. Box 3000, FI-90014 University of Oulu, Finland

* Corresponding author: Teemu Tyni

Received  February 2018 Revised  September 2018 Published  December 2018

Fund Project: This work was supported by the Academy of Finland (application number 250215, the Centre of Excellence in Inverse Problems Research (2014–2017) and application number 312123, the Centre of Excellence of Inverse Modelling and Imaging (2018–2025))

We consider an inverse scattering problem of recovering the unknown coefficients of quasi-linearly perturbed biharmonic operator on the line. These unknown complex-valued coefficients are assumed to satisfy some regularity conditions on their nonlinearity, but they can be discontinuous or singular in their space variable. We prove that the inverse Born approximation can be used to recover some essential information about the unknown coefficients from the knowledge of the reflection coefficient. This information is the jump discontinuities and the local singularities of the coefficients.

Citation: Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009
References:
[1]

T. Aktosun and V. G. Papanicolaou, Time evolution of the scattering data for a fourth-order linear differential operator, Inverse Problems, 24 (2008), 055013, 14 pp. doi: 10.1088/0266-5611/24/5/055013. Google Scholar

[2]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3. Google Scholar

[3]

L. Hörmander, The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin Heidelberg, 2003. doi: 10.1007/978-3-642-61497-2. Google Scholar

[4]

K. Iwasaki, Scattering theory for 4th order differential operators: Ⅰ, Japan. J. Math., 14 (1988), 1-57. doi: 10.4099/math1924.14.1. Google Scholar

[5]

K. Iwasaki, Scattering theory for 4th order differential operators: Ⅱ, Japan. J. Math., 14 (1988), 59-96. doi: 10.4099/math1924.14.1. Google Scholar

[6]

R. Kanwal, Generalized Functions: Theory and Technique, Academic Press, New York, 1983. Google Scholar

[7]

B. Pausader, Scattering for the beam equation in low dimensions, preprint, arXiv: 0903.3777v2.Google Scholar

[8]

V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, Journal of Physics A: Mathematical and General, 42 (2009), 332002, 7pp. doi: 10.1088/1751-8113/42/33/332002. Google Scholar

[9]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, Journal of mathematical physics, 53 (2012), 123522, 16pp. doi: 10.1063/1.4769825. Google Scholar

[10]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Third edition. Chelsea Publishing Co., New York, 1986. Google Scholar

[11]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20pp. doi: 10.1088/1361-6420/aa873e. Google Scholar

[12]

T. Tyni, M. Harju and V. Serov, Recovery of singularities in fourth-order operator on the line from limited data, Inverse Problems, 32 (2016), 075001, 22pp. doi: 10.1088/0266-5611/32/7/075001. Google Scholar

[13]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Prob. Imag., 12 (2018), 205-227. doi: 10.3934/ipi.2018008. Google Scholar

[14]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995. Google Scholar

show all references

References:
[1]

T. Aktosun and V. G. Papanicolaou, Time evolution of the scattering data for a fourth-order linear differential operator, Inverse Problems, 24 (2008), 055013, 14 pp. doi: 10.1088/0266-5611/24/5/055013. Google Scholar

[2]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3. Google Scholar

[3]

L. Hörmander, The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin Heidelberg, 2003. doi: 10.1007/978-3-642-61497-2. Google Scholar

[4]

K. Iwasaki, Scattering theory for 4th order differential operators: Ⅰ, Japan. J. Math., 14 (1988), 1-57. doi: 10.4099/math1924.14.1. Google Scholar

[5]

K. Iwasaki, Scattering theory for 4th order differential operators: Ⅱ, Japan. J. Math., 14 (1988), 59-96. doi: 10.4099/math1924.14.1. Google Scholar

[6]

R. Kanwal, Generalized Functions: Theory and Technique, Academic Press, New York, 1983. Google Scholar

[7]

B. Pausader, Scattering for the beam equation in low dimensions, preprint, arXiv: 0903.3777v2.Google Scholar

[8]

V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, Journal of Physics A: Mathematical and General, 42 (2009), 332002, 7pp. doi: 10.1088/1751-8113/42/33/332002. Google Scholar

[9]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, Journal of mathematical physics, 53 (2012), 123522, 16pp. doi: 10.1063/1.4769825. Google Scholar

[10]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Third edition. Chelsea Publishing Co., New York, 1986. Google Scholar

[11]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20pp. doi: 10.1088/1361-6420/aa873e. Google Scholar

[12]

T. Tyni, M. Harju and V. Serov, Recovery of singularities in fourth-order operator on the line from limited data, Inverse Problems, 32 (2016), 075001, 22pp. doi: 10.1088/0266-5611/32/7/075001. Google Scholar

[13]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Prob. Imag., 12 (2018), 205-227. doi: 10.3934/ipi.2018008. Google Scholar

[14]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995. Google Scholar

Figure 1.  Coefficients $q_1$ and $q_0$
Figure 2.  Numerical reconstruction (red) and the unknown combination (black)
[1]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems & Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[2]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[3]

Kim Knudsen, Jennifer L. Mueller. The born approximation and Calderón's method for reconstruction of conductivities in 3-D. Conference Publications, 2011, 2011 (Special) : 844-853. doi: 10.3934/proc.2011.2011.844

[4]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[5]

Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

[6]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[7]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[8]

Yi-Hsuan Lin. Reconstruction of penetrable obstacles in the anisotropic acoustic scattering. Inverse Problems & Imaging, 2016, 10 (3) : 765-780. doi: 10.3934/ipi.2016020

[9]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[10]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[11]

Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141

[12]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[13]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems & Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[14]

Filippo Gazzola. On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3583-3597. doi: 10.3934/dcds.2013.33.3583

[15]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[16]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[17]

Haifeng Ma, Xiaoshuang Gao. Further results on the perturbation estimations for the Drazin inverse. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 493-503. doi: 10.3934/naco.2018031

[18]

Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029

[19]

Janne M.J. Huttunen, J. P. Kaipio. Approximation errors in nonstationary inverse problems. Inverse Problems & Imaging, 2007, 1 (1) : 77-93. doi: 10.3934/ipi.2007.1.77

[20]

Matti Lassas, Teemu Saksala, Hanming Zhou. Reconstruction of a compact manifold from the scattering data of internal sources. Inverse Problems & Imaging, 2018, 12 (4) : 993-1031. doi: 10.3934/ipi.2018042

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (49)
  • HTML views (161)
  • Cited by (0)

Other articles
by authors

[Back to Top]