February  2019, 13(1): 159-175. doi: 10.3934/ipi.2019009

Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line

Department of Mathematical Sciences, P.O. Box 3000, FI-90014 University of Oulu, Finland

* Corresponding author: Teemu Tyni

Received  February 2018 Revised  September 2018 Published  December 2018

Fund Project: This work was supported by the Academy of Finland (application number 250215, the Centre of Excellence in Inverse Problems Research (2014–2017) and application number 312123, the Centre of Excellence of Inverse Modelling and Imaging (2018–2025)).

We consider an inverse scattering problem of recovering the unknown coefficients of quasi-linearly perturbed biharmonic operator on the line. These unknown complex-valued coefficients are assumed to satisfy some regularity conditions on their nonlinearity, but they can be discontinuous or singular in their space variable. We prove that the inverse Born approximation can be used to recover some essential information about the unknown coefficients from the knowledge of the reflection coefficient. This information is the jump discontinuities and the local singularities of the coefficients.

Citation: Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems and Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009
References:
[1]

T. Aktosun and V. G. Papanicolaou, Time evolution of the scattering data for a fourth-order linear differential operator, Inverse Problems, 24 (2008), 055013, 14 pp. doi: 10.1088/0266-5611/24/5/055013.

[2]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.

[3]

L. Hörmander, The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin Heidelberg, 2003. doi: 10.1007/978-3-642-61497-2.

[4]

K. Iwasaki, Scattering theory for 4th order differential operators: Ⅰ, Japan. J. Math., 14 (1988), 1-57.  doi: 10.4099/math1924.14.1.

[5]

K. Iwasaki, Scattering theory for 4th order differential operators: Ⅱ, Japan. J. Math., 14 (1988), 59-96.  doi: 10.4099/math1924.14.1.

[6]

R. Kanwal, Generalized Functions: Theory and Technique, Academic Press, New York, 1983.

[7]

B. Pausader, Scattering for the beam equation in low dimensions, preprint, arXiv: 0903.3777v2.

[8]

V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, Journal of Physics A: Mathematical and General, 42 (2009), 332002, 7pp. doi: 10.1088/1751-8113/42/33/332002.

[9]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, Journal of mathematical physics, 53 (2012), 123522, 16pp. doi: 10.1063/1.4769825.

[10]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Third edition. Chelsea Publishing Co., New York, 1986.

[11]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20pp. doi: 10.1088/1361-6420/aa873e.

[12]

T. Tyni, M. Harju and V. Serov, Recovery of singularities in fourth-order operator on the line from limited data, Inverse Problems, 32 (2016), 075001, 22pp. doi: 10.1088/0266-5611/32/7/075001.

[13]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Prob. Imag., 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.

[14]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995.

show all references

References:
[1]

T. Aktosun and V. G. Papanicolaou, Time evolution of the scattering data for a fourth-order linear differential operator, Inverse Problems, 24 (2008), 055013, 14 pp. doi: 10.1088/0266-5611/24/5/055013.

[2]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems, Springer-Verlag, Berlin Heidelberg, 2010. doi: 10.1007/978-3-642-12245-3.

[3]

L. Hörmander, The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin Heidelberg, 2003. doi: 10.1007/978-3-642-61497-2.

[4]

K. Iwasaki, Scattering theory for 4th order differential operators: Ⅰ, Japan. J. Math., 14 (1988), 1-57.  doi: 10.4099/math1924.14.1.

[5]

K. Iwasaki, Scattering theory for 4th order differential operators: Ⅱ, Japan. J. Math., 14 (1988), 59-96.  doi: 10.4099/math1924.14.1.

[6]

R. Kanwal, Generalized Functions: Theory and Technique, Academic Press, New York, 1983.

[7]

B. Pausader, Scattering for the beam equation in low dimensions, preprint, arXiv: 0903.3777v2.

[8]

V. Serov, An inverse Born approximation for the general nonlinear Schrödinger operator on the line, Journal of Physics A: Mathematical and General, 42 (2009), 332002, 7pp. doi: 10.1088/1751-8113/42/33/332002.

[9]

V. Serov, M. Harju and G. Fotopoulos, Direct and inverse scattering for nonlinear Schrödinger equation in 2D, Journal of mathematical physics, 53 (2012), 123522, 16pp. doi: 10.1063/1.4769825.

[10]

E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Third edition. Chelsea Publishing Co., New York, 1986.

[11]

T. Tyni and M. Harju, Inverse backscattering problem for perturbations of biharmonic operator, Inverse Problems, 33 (2017), 105002, 20pp. doi: 10.1088/1361-6420/aa873e.

[12]

T. Tyni, M. Harju and V. Serov, Recovery of singularities in fourth-order operator on the line from limited data, Inverse Problems, 32 (2016), 075001, 22pp. doi: 10.1088/0266-5611/32/7/075001.

[13]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Prob. Imag., 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.

[14]

E. Zeidler, Applied Functional Analysis, Springer-Verlag, New York, 1995.

Figure 1.  Coefficients $q_1$ and $q_0$
Figure 2.  Numerical reconstruction (red) and the unknown combination (black)
[1]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[2]

Jaakko Kultima, Valery Serov. Reconstruction of singularities in two-dimensional quasi-linear biharmonic operator. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022011

[3]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems and Imaging, 2021, 15 (5) : 1015-1033. doi: 10.3934/ipi.2021026

[4]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems and Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[5]

Teemu Tyni, Valery Serov. Scattering problems for perturbations of the multidimensional biharmonic operator. Inverse Problems and Imaging, 2018, 12 (1) : 205-227. doi: 10.3934/ipi.2018008

[6]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[7]

Lili Yan. Reconstructing a potential perturbation of the biharmonic operator on transversally anisotropic manifolds. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022034

[8]

Kim Knudsen, Jennifer L. Mueller. The born approximation and Calderón's method for reconstruction of conductivities in 3-D. Conference Publications, 2011, 2011 (Special) : 844-853. doi: 10.3934/proc.2011.2011.844

[9]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[10]

Shuyang Dai, Fengru Wang, Jerry Zhijian Yang, Cheng Yuan. On the Cauchy-Born approximation at finite temperature for alloys. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3131-3153. doi: 10.3934/dcdsb.2021176

[11]

Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

[12]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems and Imaging, 2021, 15 (3) : 499-517. doi: 10.3934/ipi.2021002

[13]

Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems and Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005

[14]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[15]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[16]

Yi-Hsuan Lin. Reconstruction of penetrable obstacles in the anisotropic acoustic scattering. Inverse Problems and Imaging, 2016, 10 (3) : 765-780. doi: 10.3934/ipi.2016020

[17]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems and Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[18]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[19]

Paulo Cesar Carrião, R. Demarque, Olímpio H. Miyagaki. Nonlinear Biharmonic Problems with Singular Potentials. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2141-2154. doi: 10.3934/cpaa.2014.13.2141

[20]

Dinh Nguyen Duy Hai. Hölder-Logarithmic type approximation for nonlinear backward parabolic equations connected with a pseudo-differential operator. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1715-1734. doi: 10.3934/cpaa.2022043

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (322)
  • HTML views (207)
  • Cited by (1)

Other articles
by authors

[Back to Top]