\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Let $A∈{\rm{Sym}}(n× n)$ be an elliptic 2-tensor. Consider the anisotropic fractional Schrödinger operator $\mathscr{L}_A^s+q$, where $\mathscr{L}_A^s: = (-\nabla·(A(x)\nabla))^s$, $s∈ (0, 1)$ and $q∈ L^∞$. We are concerned with the simultaneous recovery of $q$ and possibly embedded soft or hard obstacles inside $q$ by the exterior Dirichlet-to-Neumann (DtN) map outside a bounded domain $Ω$ associated with $\mathscr{L}_A^s+q$. It is shown that a single measurement can uniquely determine the embedded obstacle, independent of the surrounding potential $q$. If multiple measurements are allowed, then the surrounding potential $q$ can also be uniquely recovered. These are surprising findings since in the local case, namely $s = 1$, both the obstacle recovery by a single measurement and the simultaneous recovery of the surrounding potential by multiple measurements are long-standing problems and still remain open in the literature. Our argument for the nonlocal inverse problem is mainly based on the strong uniqueness property and Runge approximation property for anisotropic fractional Schrödinger operators.

    Mathematics Subject Classification: Primary: 35R30; Secondary: 26A33, 35J10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single farfield measurement, Proc. Amer. Math. Soc., 133 (2005), 1685–1691. Corrigendum: Preprtint arXiv math.AP/0601406, 2006. doi: 10.1090/S0002-9939-05-07810-X.
    [2] L. A. Caffarelli and P. R. Stinga, Fractional elliptic equations, Caccioppoli estimates and regularity, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 33 (2016), 767-807.  doi: 10.1016/j.anihpc.2015.01.004.
    [3] J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, Inverse Problems, 19 (2003), 1361-1384.  doi: 10.1088/0266-5611/19/6/008.
    [4] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd Edition, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.
    [5] T. GhoshY.-H. Lin and J. Xiao, The Calderón problem for variable coefficients nonlocal elliptic operators, Communications in Partial Differential Equations, 42 (2017), 1923-1961.  doi: 10.1080/03605302.2017.1390681.
    [6] T. Ghosh, M. Salo and G. Uhlmann, The Calderón problem for the fractional Schrödinger equation, arXiv: 1609.09248.
    [7] B. Harrach and Y.-H. Lin, Monotonicity-based inversion of the fractional Schrödinger equation, arXiv: 1711.05641.
    [8] N. HondaG. Nakamura and M. Sini, Analytic extension and reconstruction of obstacles from few measurements for elliptic second order operators, Math. Ann., 355 (2013), 401-427.  doi: 10.1007/s00208-012-0786-0.
    [9] O. ImanuvilovG. Uhlmann and M. Yamamoto, The Calderón problem with partial data in two dimensions, J. Am. Math. Soc., 23 (2010), 655-691.  doi: 10.1090/S0894-0347-10-00656-9.
    [10] V. Isakov, Inverse Problems for Partial Differential Equations, 2nd edition, Applied Mathematical Sciences, 127, Springer-Verlag, New York, 2006.
    [11] C. KenigJ. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math., 165 (2007), 567-591.  doi: 10.4007/annals.2007.165.567.
    [12] A. Kirsch X. Liu, Direct and inverse acoustic scattering by a mixed-type scatterer, Inverse Problems, 29 (2013), 065005, 19pp. doi: 10.1088/0266-5611/29/6/065005.
    [13] A. Kirsch and L. Päivärinta, On recovering obstacles inside inhomogeneities, Math. Meth. Appl. Sci., 21 (1998), 619-651.  doi: 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO;2-P.
    [14] R.-Y. Lai and Y.-H. Lin, Global uniqueness for the semilinear fractional Schrödinger equation, arXiv: 1710.07404.
    [15] H. Liu and X. Liu, Recovery of an embedded obstacle and its surrounding medium from formally determined scattering data, Inverse Problems, 33 (2017), 065001, 20pp. doi: 10.1088/1361-6420/aa6770.
    [16] H. LiuM. PetriniL. Rondi and J. Xiao, Stable determination of sound-hard polyhedral scatterers by a minimal number of scattering measurements, J. Differential Equations, 262 (2017), 1631-1670.  doi: 10.1016/j.jde.2016.10.021.
    [17] H. LiuH. Zhao and C. Zou, Determining scattering support of anisotropic acoustic mediums and obstacles, Commun. Math. Sci., 13 (2015), 987-1000.  doi: 10.4310/CMS.2015.v13.n4.a7.
    [18] X. Liu and B. Zhang, Direct and inverse obstacle scattering problems in a piecewise homogeneous medium, SIAM J. Appl. Math., 70 (2010), 3105-3120.  doi: 10.1137/090777578.
    [19] H. Liu and J. Zou, Uniqueness in an inverse acoustic scatterer scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524.  doi: 10.1088/0266-5611/22/2/008.
    [20] H. Liu and J. Zou, On unique determination of partially coated polyhedral scatterers with far-field measurements, Inverse Problems, 23 (2007), 297-308.  doi: 10.1088/0266-5611/23/1/016.
    [21] H. Liu and J. Zou, On uniqueness in inverse acoustic and electromagnetic obstacle scattering problems, J. Phys.: Conf. Ser., 124 012006.
    [22] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.
    [23] E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [24] S. O'Dell, Inverse scattering for the Laplace-Beltrami operator with complex electromagnetic potentials and embedded obstacles, Inverse Problems, 22 (2006), 1579-1603.  doi: 10.1088/0266-5611/22/5/005.
    [25] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Volume 44, Springer Science & Business Media, 2012.
    [26] L. Rondi, Unique determination of non-smooth sound-soft scatterers by finitely many far-field measurements, Indiana Univ. Math. J., 52 (2003), 1631-1662.  doi: 10.1512/iumj.2003.52.2394.
    [27] L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement, Indiana Univ. Math. J., 57 (2008), 1377-1408.  doi: 10.1512/iumj.2008.57.3217.
    [28] W. Rudin, Functional Analysis, New York-Düsseldorf-Johannesburg, 1973.
    [29] A. Rüland and M. Salo, Exponential instability in the fractional Calderón problem, Inverse Problems, 34 (2018), 045003, 21 pp, arXiv: 1711.04799. doi: 10.1088/1361-6420/aaac5a.
    [30] A. Rüland and M. Salo, The fractional Calderón problem: low regularity and stability, arXiv: 1708.06294.
    [31] P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Communications in Partial Differential Equations, 35 (2010), 2092-2122.  doi: 10.1080/03605301003735680.
  • 加载中
SHARE

Article Metrics

HTML views(1783) PDF downloads(294) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return