April  2019, 13(2): 231-261. doi: 10.3934/ipi.2019013

Microlocal analysis of a spindle transform

1. 

Halligan Hall, 161 College Ave, Medford MA 02144, USA

2. 

Alan Turing Building, Oxford Road, Manchester, Greater Manchester M13 9PL, UK

Received  June 2017 Revised  October 2017 Published  January 2019

Fund Project: The first author is supported by Engineering and Physical Sciences Research Council and Rapiscan systems, CASE studentship
The second author is supported by Engineering and Physical Sciences Research Council (EP/M016773/1).

An analysis of the stability of the spindle transform, introduced in [16], is presented. We do this via a microlocal approach and show that the normal operator for the spindle transform is a type of paired Lagrangian operator with "blowdown–blowdown" singularities analogous to that of a limited data synthetic aperture radar (SAR) problem studied by Felea et. al. [4]. We find that the normal operator for the spindle transform belongs to a class of distibutions $ I^{p, l}(\Delta, \Lambda)+I^{p, l}(\widetilde{\Delta}, \Lambda) $ studied by Felea and Marhuenda in [4,10], where $ \widetilde{\Delta} $ is reflection through the origin, and $ \Lambda $ is associated to a rotation artefact. Later, we derive a filter to reduce the strength of the image artefact and show that it is of convolution type. We also provide simulated reconstructions to show the artefacts produced by $ \Lambda $ and show how the filter we derived can be applied to reduce the strength of the artefact.

Citation: James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013
References:
[1]

J. R. Driscoll and D. M. Healy, Computing Fourier transforms and convolutions on the 2-sphere, Advances in Applied Mathematics, 15 (1994), 202-250.  doi: 10.1006/aama.1994.1008.  Google Scholar

[2]

J. J. Duistermaat, Fourier Integral Operators, volume 130. Springer Science & Business Media, 1996.  Google Scholar

[3]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities, Communications in Partial Differential Equations, 30 (2005), 1717-1740.  doi: 10.1080/03605300500299968.  Google Scholar

[4]

R. FeleaR. Gaburro and C. J. Nolan, Microlocal analysis of SAR imaging of a dynamic reflectivity function, SIAM Journal on Mathematical Analysis, 45 (2013), 2767-2789.  doi: 10.1137/120873571.  Google Scholar

[5]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Journal of Functional Analysis, 89 (1990), 202-232.  doi: 10.1016/0022-1236(90)90011-9.  Google Scholar

[6]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J, 48 (1981), 251-267.  doi: 10.1215/S0012-7094-81-04814-6.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV: Fourier Integral Operators. Corrected reprint of the 1985 original, Springer, 1994. Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition, Springer, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[10]

F. Marhuenda, Microlocal analysis of some isospectral deformations, Transactions of the American Mathematical Society, 343 (1994), 245-275.  doi: 10.1090/S0002-9947-1994-1181185-0.  Google Scholar

[11]

F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001. doi: 10.1137/1.9780898719284.  Google Scholar

[12]

M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 099802, 1 p. doi: 10.1088/0266-5611/26/9/099802.  Google Scholar

[13]

S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015.  doi: 10.1063/1.357668.  Google Scholar

[14]

V. P. Palamodov, An analytic reconstruction for the Compton scattering tomography in a plane, Inverse Problems, 27 (2011), 125004, 8pp. doi: 10.1088/0266-5611/27/12/125004.  Google Scholar

[15]

R. T. Seeley, Spherical harmonics, The American Mathematical Monthly, 73 (1966), 115-121.  doi: 10.1080/00029890.1966.11970927.  Google Scholar

[16]

J. Webber and W. Lionheart, Three dimensional Compton scattering tomography, Inverse Problems, 34 (2018), arXiv: 1704.03378. doi: 10.1088/1361-6420/aac51e.  Google Scholar

show all references

References:
[1]

J. R. Driscoll and D. M. Healy, Computing Fourier transforms and convolutions on the 2-sphere, Advances in Applied Mathematics, 15 (1994), 202-250.  doi: 10.1006/aama.1994.1008.  Google Scholar

[2]

J. J. Duistermaat, Fourier Integral Operators, volume 130. Springer Science & Business Media, 1996.  Google Scholar

[3]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities, Communications in Partial Differential Equations, 30 (2005), 1717-1740.  doi: 10.1080/03605300500299968.  Google Scholar

[4]

R. FeleaR. Gaburro and C. J. Nolan, Microlocal analysis of SAR imaging of a dynamic reflectivity function, SIAM Journal on Mathematical Analysis, 45 (2013), 2767-2789.  doi: 10.1137/120873571.  Google Scholar

[5]

A. Greenleaf and G. Uhlmann, Estimates for singular Radon transforms and pseudodifferential operators with singular symbols, Journal of Functional Analysis, 89 (1990), 202-232.  doi: 10.1016/0022-1236(90)90011-9.  Google Scholar

[6]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. J, 48 (1981), 251-267.  doi: 10.1215/S0012-7094-81-04814-6.  Google Scholar

[7]

L. Hörmander, The Analysis of Linear Partial Differential Operators IV: Fourier Integral Operators. Corrected reprint of the 1985 original, Springer, 1994. Google Scholar

[8]

L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution theory and Fourier analysis. Reprint of the second (1990) edition, Springer, Berlin, 2003. doi: 10.1007/978-3-642-61497-2.  Google Scholar

[9]

L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[10]

F. Marhuenda, Microlocal analysis of some isospectral deformations, Transactions of the American Mathematical Society, 343 (1994), 245-275.  doi: 10.1090/S0002-9947-1994-1181185-0.  Google Scholar

[11]

F. Natterer, The Mathematics of Computerized Tomography, SIAM, 2001. doi: 10.1137/1.9780898719284.  Google Scholar

[12]

M. K. Nguyen and T. T. Truong, Inversion of a new circular-arc radon transform for Compton scattering tomography, Inverse Problems, 26 (2010), 099802, 1 p. doi: 10.1088/0266-5611/26/9/099802.  Google Scholar

[13]

S. J. Norton, Compton scattering tomography, Journal of Applied Physics, 76 (1994), 2007-2015.  doi: 10.1063/1.357668.  Google Scholar

[14]

V. P. Palamodov, An analytic reconstruction for the Compton scattering tomography in a plane, Inverse Problems, 27 (2011), 125004, 8pp. doi: 10.1088/0266-5611/27/12/125004.  Google Scholar

[15]

R. T. Seeley, Spherical harmonics, The American Mathematical Monthly, 73 (1966), 115-121.  doi: 10.1080/00029890.1966.11970927.  Google Scholar

[16]

J. Webber and W. Lionheart, Three dimensional Compton scattering tomography, Inverse Problems, 34 (2018), arXiv: 1704.03378. doi: 10.1088/1361-6420/aac51e.  Google Scholar

Figure 1.  A spindle torus with axis of rotation $ \theta $, tube centre offset $ r $ and tube radius $ \sqrt{1+r^2} $. The distance between the origin and either of the points where the torus self intersects is 1
Figure 2.  Small bead
Figure 3.  Bead reconstruction by backprojection
Figure 4.  Bead reconstruction by filtered backprojection, with $ L = 25 $ components
Figure 5.  Bead reconstruction by backprojection, truncating the data to $ L = 25 $ components
Figure 6.  Layered spherical shell segment phantom, centred at the origin
Figure 7.  Layered plane phantom
Figure 8.  Layered spherical shell segment CGLS reconstruction
Figure 9.  Layered spherical shell segment CGLS reconstruction, with $ Q^{\frac{1}{2}} $ used as a pre–conditioner and no added Tikhonov regularisation
Figure 10.  Layered plane reconstruction by CGLS
Figure 11.  Layered plane reconstruction by Landweber iteration
Figure 12.  Spherical shell reconstruction by Landweber iteration
Figure 13.  Spherical shell reconstruction by Landweber iteration, with $ Q^{\frac{1}{2}} $ used as a pre–conditioner
[1]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[5]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[8]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[9]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[10]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[11]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[12]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[13]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[14]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[15]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[16]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[17]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[18]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[19]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[20]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (120)
  • HTML views (262)
  • Cited by (6)

Other articles
by authors

[Back to Top]