• Previous Article
    Electrical networks with prescribed current and applications to random walks on graphs
  • IPI Home
  • This Issue
  • Next Article
    An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration
April  2019, 13(2): 337-351. doi: 10.3934/ipi.2019017

Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography

1. 

Institute of Applied Mathematical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

2. 

Institute of Applied Mathematics, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea

* Corresponding author

Received  April 2018 Revised  August 2018 Published  January 2019

Fund Project: The first author was supported in part by JSPS KAKENHI grant number 15K17572.

We consider a boundary value problem of the stationary transport equation with the incoming boundary condition in two or three dimensional bounded convex domains. We discuss discontinuity of the solution to the boundary value problem arising from discontinuous incoming boundary data, which we call the boundary-induced discontinuity. In particular, we give two kinds of sufficient conditions on the incoming boundary data for the boundary-induced discontinuity. We propose a method to reconstruct the attenuation coefficient from jumps in boundary measurements.

Citation: I-Kun Chen, Daisuke Kawagoe. Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography. Inverse Problems & Imaging, 2019, 13 (2) : 337-351. doi: 10.3934/ipi.2019017
References:
[1]

V. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, 1998. doi: 10.1007/978-1-4612-1994-1.  Google Scholar

[2]

D. S. AnikonovI. V. Prokhorov and A. E. Kovtanyuk, Investigation of scattering and absorbing media by the methods of X-ray tomography, J. Inv. Ill-Posed Problems, 1 (1993), 259-281.  doi: 10.1515/jiip.1993.1.4.259.  Google Scholar

[3]

K. AokiC. BardosC. Dogbe and F. Golse, A note on the propagation of boundary induced discontinuities in kinetic theory, Math. Models Methods Appl. Sci., 11 (2001), 1581-1595.  doi: 10.1142/S0218202501001483.  Google Scholar

[4]

S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems, Inverse Problems, 25 (2009), 123010, 59pp. doi: 10.1088/0266-5611/25/12/123010.  Google Scholar

[5]

G. Bal and A. Jollivet, Stability estimates in stationary inverse transport, Inverse Probl. Imaging, 2 (2008), 427-454.  doi: 10.3934/ipi.2008.2.427.  Google Scholar

[6]

M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique, (French) [Trace theorems for neutronic function spaces], C. R. Acad. Sci. Paris, Sér. I, Math., 300 (1985), 89-92.  Google Scholar

[7]

S. Chandrasekhar, Radiative Transfer, Dover Publications Inc., New York, 1960.  Google Scholar

[8]

M. Choulli and P. Stefanov, An inverse boundary value problem for the stationary transport equation, Osaka J. Math., 36 (1999), 87-104.   Google Scholar

[9]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197 (2010), 713-809.  doi: 10.1007/s00205-009-0285-y.  Google Scholar

[10]

D. Kawagoe and I.-K. Chen, Propagation of boundary-induced discontinuity in stationary radiative transfer, J. Stat. Phys., 170 (2018), 127-140.  doi: 10.1007/s10955-017-1922-8.  Google Scholar

[11]

F. Natterer, The Mathematics of Computerized Tomography, SIAM, Germany, 2001. doi: 10.1137/1.9780898719284.  Google Scholar

[12]

J. N. Wang, Stability estimates of an inverse problem for the stationary transport equation, Ann. Inst. Henri Poincaré, 70 (1999), 473-495.   Google Scholar

show all references

References:
[1]

V. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, 1998. doi: 10.1007/978-1-4612-1994-1.  Google Scholar

[2]

D. S. AnikonovI. V. Prokhorov and A. E. Kovtanyuk, Investigation of scattering and absorbing media by the methods of X-ray tomography, J. Inv. Ill-Posed Problems, 1 (1993), 259-281.  doi: 10.1515/jiip.1993.1.4.259.  Google Scholar

[3]

K. AokiC. BardosC. Dogbe and F. Golse, A note on the propagation of boundary induced discontinuities in kinetic theory, Math. Models Methods Appl. Sci., 11 (2001), 1581-1595.  doi: 10.1142/S0218202501001483.  Google Scholar

[4]

S. R. Arridge and J. C. Schotland, Optical tomography: Forward and inverse problems, Inverse Problems, 25 (2009), 123010, 59pp. doi: 10.1088/0266-5611/25/12/123010.  Google Scholar

[5]

G. Bal and A. Jollivet, Stability estimates in stationary inverse transport, Inverse Probl. Imaging, 2 (2008), 427-454.  doi: 10.3934/ipi.2008.2.427.  Google Scholar

[6]

M. Cessenat, Théorèmes de trace pour des espaces de fonctions de la neutronique, (French) [Trace theorems for neutronic function spaces], C. R. Acad. Sci. Paris, Sér. I, Math., 300 (1985), 89-92.  Google Scholar

[7]

S. Chandrasekhar, Radiative Transfer, Dover Publications Inc., New York, 1960.  Google Scholar

[8]

M. Choulli and P. Stefanov, An inverse boundary value problem for the stationary transport equation, Osaka J. Math., 36 (1999), 87-104.   Google Scholar

[9]

Y. Guo, Decay and continuity of the Boltzmann equation in bounded domains, Arch. Ration. Mech. Anal., 197 (2010), 713-809.  doi: 10.1007/s00205-009-0285-y.  Google Scholar

[10]

D. Kawagoe and I.-K. Chen, Propagation of boundary-induced discontinuity in stationary radiative transfer, J. Stat. Phys., 170 (2018), 127-140.  doi: 10.1007/s10955-017-1922-8.  Google Scholar

[11]

F. Natterer, The Mathematics of Computerized Tomography, SIAM, Germany, 2001. doi: 10.1137/1.9780898719284.  Google Scholar

[12]

J. N. Wang, Stability estimates of an inverse problem for the stationary transport equation, Ann. Inst. Henri Poincaré, 70 (1999), 473-495.   Google Scholar

[1]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[2]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[3]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[4]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[5]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[15]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[16]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[17]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[20]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (84)
  • HTML views (206)
  • Cited by (0)

Other articles
by authors

[Back to Top]