[1]
|
J.-F. Cai, S. Osher and Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Modeling & Simulation, 8 (2009), 337-369.
doi: 10.1137/090753504.
|
[2]
|
R. M. Christley, G. Pinchbeck, R. Bowers, D. Clancy, N. French, R. Bennett and J. Turner, Infection in social networks: using network analysis to identify high-risk individuals, American Journal of Epidemiology, 162 (2005), 1024-1031.
doi: 10.1093/aje/kwi308.
|
[3]
|
S.-Y. Chung and C. A. Berenstein, $\omega$-harmonic functions and inverse conductivity problems on networks, SIAM Journal on Applied Mathematics, 65 (2005), 1200-1226.
doi: 10.1137/S0036139903432743.
|
[4]
|
C. Cooper, R. Elsasser, H. Ono and T. Radzik, Coalescing random walks and voting on connected graphs, SIAM Journal on Discrete Mathematics, 27 (2013), 1748-1758.
doi: 10.1137/120900368.
|
[5]
|
E. B. Curtis and J. A. Morrow, Inverse Problems for Electrical Networks, vol. 13, World Scientific, 2000.
|
[6]
|
P. G. Doyle and J. L. Snell, Random Walks and Electric Networks, Mathematical Association of America, 1984.
|
[7]
|
M. Draief and A. Ganesh, A random walk model for infection on graphs: Spread of epidemics & rumours with mobile agents, Discrete Event Dynamic Systems, 21 (2011), 41-61.
doi: 10.1007/s10626-010-0092-5.
|
[8]
|
J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204.
|
[9]
|
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, SIAM, 1999.
doi: 10.1137/1.9781611971088.
|
[10]
|
E. Esser, Applications of Lagrangian-based alternating direction methods and connections to split bregman, CAM report, 9 (2009), 31.
|
[11]
|
E. F. Fama, Random walks in stock market prices, Financial Analysts Journal, 51 (1995), 75-80.
|
[12]
|
D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, Studies in Mathematics and its Applications (eds. F. M. and G. R.), vol. 15, 1983, chapter 9,299–331.
|
[13]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers & Mathematics with Applications, 2 (1976), 17-40.
|
[14]
|
R. Glowinski and A. Marroco, Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires, Revue Française D'automatique, Informatique, Recherche Opérationnelle. Analyse Numérique, 9 (1975), 41–76.
|
[15]
|
T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[16]
|
P. R. Halmos, Finite-dimensional Vector Spaces, Springer-Verlag, New York-Heidelberg, 1974.
|
[17]
|
K. F. Hasanov, A. W. Ma, R. S. Yoon, A. I. Nachman and M. Joy, A new approach to current density impedance imaging, in Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE, vol. 1, IEEE, 2004, 1321–1324.
|
[18]
|
M. R. Henzinger, A. Heydon, M. Mitzenmacher and M. Najork, Measuring index quality using random walks on the web, Computer Networks, 31 (1999), 1291-1303.
|
[19]
|
N. Hoell, A. Moradifam and A. Nachman, Current density impedance imaging of an anisotropic conductivity in a known conformal class, SIAM Journal on Mathematical Analysis, 46 (2014), 1820-1842.
doi: 10.1137/130911524.
|
[20]
|
R. L. Jerrard, A. Moradifam and A. I. Nachman, Existence and uniqueness of minimizers of general least gradient problems, J. Reine Angew. Math., 734 (2018), 71-97.
doi: 10.1515/crelle-2014-0151.
|
[21]
|
M. Joy, G. Scott and M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging, Magnetic Resonance Imaging, 7 (1989), 89-94.
|
[22]
|
S. Kim, O. Kwon, J. K. Seo and J.-R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM Journal on Mathematical Analysis, 34 (2002), 511-526.
|
[23]
|
Y. J. Kim, O. Kwon, J. K. Seo and E. J. Woo, Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography, Inverse Problems, 19 (2003), 1213-1225.
doi: 10.1088/0266-5611/19/5/312.
|
[24]
|
O. Kwon, J.-Y. Lee and J.-R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Problems, 18 (2002), 1089-1100.
doi: 10.1088/0266-5611/18/4/310.
|
[25]
|
L. Lovász, Random walks on graphs, Combinatorics, Paul Erdos is Eighty, 2 (1993), 1-46.
|
[26]
|
A. Moradifam, Existence and structure of minimizers of least gradient problems, Indiana University Mathematics Journal, 67 (2018), 1025-1037.
doi: 10.1512/iumj.2018.67.7360.
|
[27]
|
A. Moradifam and A. Nachman, Convergence of the alternating split Bregman algorithm in infinite-dimensional Hilbert spaces.
|
[28]
|
A. Moradifam, A. Nachman and A. Tamasan, Conductivity imaging from one interior measurement in the presence of perfectly conducting and insulating inclusions, SIAM Journal on Mathematical Analysis, 44 (2012), 3969-3990.
doi: 10.1137/120866701.
|
[29]
|
A. Moradifam, A. Nachman and A. Timonov, A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data, Inverse Problems, 28 (2012), 084003, 23PP.
doi: 10.1088/0266-5611/28/8/084003.
|
[30]
|
A. Nachman, A. Tamasan and A. Timonov, Current density impedance imaging, in Tomography and Inverse Transport Theory, vol. 559, Amer. Math. Soc. Providence, RI, 2011,135–149.
doi: 10.1090/conm/559/11076.
|
[31]
|
A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563.
doi: 10.1088/0266-5611/23/6/017.
|
[32]
|
A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014, 16PP.
doi: 10.1088/0266-5611/25/3/035014.
|
[33]
|
A. Nachman, A. Tamasan and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM Journal on Applied Mathematics, 70 (2010), 3342-3362.
doi: 10.1137/10079241X.
|
[34]
|
A. Nachman, A. Tamasan and J. Veras, A weighted minimum gradient problem with complete electrode model boundary conditions for conductivity imaging, SIAM Journal on Applied Mathematics, 76 (2016), 1321-1343.
doi: 10.1137/15M100897X.
|
[35]
|
S. Ribas, B. Ribeiro-Neto, R. L. Santos, E. de Souza e Silva, A. Ueda and N. Ziviani, Random walks on the reputation graph, in Proceedings of the 2015 International Conference on The Theory of Information Retrieval, ACM, 2015,181–190.
|
[36]
|
P. Sarkar and A. W. Moore, Random walks in social networks and their applications: A survey, in Social Network Data Analytics, Springer, 2011, 43–77.
doi: 10.1007/978-1-4419-8462-3_3.
|
[37]
|
S. Setzer, Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage, in International Conference on Scale Space and Variational Methods in Computer Vision, Springer, 2009,464–476.
|
[38]
|
S. Setzer, Operator splittings, Bregman methods and frame shrinkage in image processing, International Journal of Computer Vision, 92 (2011), 265-280.
doi: 10.1007/s11263-010-0357-3.
|
[39]
|
A. Skogseid and V. Fasano, Statistical Mechanics and Random Walks: Principles, Processes, and Applications, Nova Science Publishers, 2012.
|
[40]
|
M. E. Yildiz, R. Pagliari, A. Ozdaglar and A. Scaglione, Voting models in random networks, in Information Theory and Applications Workshop (ITA), 2010, Institute of Electrical and Electronics Engineers, 2010, 1–7.
doi: 10.1109/ITA.2010.5454090.
|