
-
Previous Article
Regularization of a backwards parabolic equation by fractional operators
- IPI Home
- This Issue
-
Next Article
Electrical networks with prescribed current and applications to random walks on graphs
An inverse obstacle problem for the wave equation in a finite time domain
1. | Laboratoire POEMS, ENSTA ParisTech, 828 Boulevard des Maréchaux, 91120 Palaiseau, France |
2. | Université Paul Sabatier, Institut de Mathématiques de Toulouse, 118 route de Narbonne, GF-31062 Toulouse Cedex 9, France |
We consider an inverse obstacle problem for the acoustic transient wave equation. More precisely, we wish to reconstruct an obstacle characterized by a Dirichlet boundary condition from lateral Cauchy data given on a subpart of the boundary of the domain and over a finite interval of time. We first give a proof of uniqueness for that problem and then propose an "exterior approach" based on a mixed formulation of quasi-reversibility and a level set method in order to actually solve the problem. Some 2D numerical experiments are provided to show that our approach is effective.
References:
[1] |
M. Bonnet,
Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Comput. Methods Appl. Mech. Engrg., 195 (2006), 5239-5254.
doi: 10.1016/j.cma.2005.10.026. |
[2] |
L. Bourgeois and J. Dardé,
A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Problems and Imaging, 4 (2010), 351-377.
doi: 10.3934/ipi.2010.4.351. |
[3] |
L. Bourgeois and J. Dardé,
The "exterior approach" to solve the inverse obstacle problem for the Stokes system, Inverse Problems and Imaging, 8 (2014), 23-51.
doi: 10.3934/ipi.2014.8.23. |
[4] |
L. Bourgeois and J. Dardé,
The "exterior approach" applied to the inverse obstacle problem for the heat equation, SIAM Journal on Numerical Analysis, 55 (2017), 1820-1842.
doi: 10.1137/16M1093872. |
[5] |
L. Bourgeois and A. Recoquillay,
A mixed formulation of the Tikhonov regularization and its application to inverse PDE problems, M2AN, 52 (2018), 123-145.
doi: 10.1051/m2an/2018008. |
[6] |
L. Bourgeois,
A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation, Inverse Problems, 21 (2005), 1087-1104.
doi: 10.1088/0266-5611/21/3/018. |
[7] |
H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983. |
[8] |
Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain, Inverse Problems, 26 (2010), 085001, 17pp.
doi: 10.1088/0266-5611/26/8/085001. |
[9] |
J. Dardé, Quasi-reversibility and Level Set Methods Applied to Elliptic Inverse Problems, PhD Université Paris-Diderot - Paris Ⅶ, 2010. |
[10] |
J. Dardé,
Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems, Inverse Problems and Imaging, 10 (2016), 379-407.
doi: 10.3934/ipi.2016005. |
[11] |
A. Doubova and E. Fernández-Cara,
Some geometric inverse problems for the linear wave equation, Inverse Problems and Imaging, 9 (2015), 371-393.
doi: 10.3934/ipi.2015.9.371. |
[12] |
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4355-5. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[14] |
A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique, Springer, Paris, 2005.
doi: 10.1007/3-540-37689-5. |
[15] |
V. Isakov, Inverse obstacle problems, Inverse Problems, 25 (2009), 123002, 18pp.
doi: 10.1088/0266-5611/25/12/123002. |
[16] |
M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004.
doi: 10.1515/9783110915549. |
[17] |
R. Lattès and J.-L. Lions, Méthode de Quasi-réversibilité et Applications, Dunod, Paris, 1967. |
[18] |
C. D. Lines and S. N. Chandler-Wilde,
A time domain point source method for inverse scattering by rough surfaces, Computing, 75 (2005), 157-180.
doi: 10.1007/s00607-004-0109-8. |
[19] |
J.-L. Lions, E. Magenes, Problèmes aux Limites non Homogènes et Applications, Vol. 2, Dunod, Paris, 1968. |
[20] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation De Systèmes Distribués, Tome 1, Masson, Paris, 1988. |
[21] |
E. Lunéville and N. Salles, eXtended Library of Finite Elements in C++, http://uma.ensta-paristech.fr/soft/XLiFE++. |
[22] |
L. Oksanen, Solving an inverse obstacle problem for the wave equation by using the boundary control method, Inverse Problems, 29 (2013), 035004, 12pp.
doi: 10.1088/0266-5611/29/3/035004. |
[23] |
S. Y. Oudot, L. J. Guibas, J. Gao and Y. Wang, Geodesic delaunay triangulations in bounded planar domains, ACM Trans. Algorithms, 6 (2010), Art. 67, 47 pp.
doi: 10.1145/1824777.1824787. |
[24] |
L. Robbiano,
Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Communications in Partial Differential Equations, 16 (1991), 789-800.
doi: 10.1080/03605309108820778. |
show all references
References:
[1] |
M. Bonnet,
Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the time domain, Comput. Methods Appl. Mech. Engrg., 195 (2006), 5239-5254.
doi: 10.1016/j.cma.2005.10.026. |
[2] |
L. Bourgeois and J. Dardé,
A quasi-reversibility approach to solve the inverse obstacle problem, Inverse Problems and Imaging, 4 (2010), 351-377.
doi: 10.3934/ipi.2010.4.351. |
[3] |
L. Bourgeois and J. Dardé,
The "exterior approach" to solve the inverse obstacle problem for the Stokes system, Inverse Problems and Imaging, 8 (2014), 23-51.
doi: 10.3934/ipi.2014.8.23. |
[4] |
L. Bourgeois and J. Dardé,
The "exterior approach" applied to the inverse obstacle problem for the heat equation, SIAM Journal on Numerical Analysis, 55 (2017), 1820-1842.
doi: 10.1137/16M1093872. |
[5] |
L. Bourgeois and A. Recoquillay,
A mixed formulation of the Tikhonov regularization and its application to inverse PDE problems, M2AN, 52 (2018), 123-145.
doi: 10.1051/m2an/2018008. |
[6] |
L. Bourgeois,
A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation, Inverse Problems, 21 (2005), 1087-1104.
doi: 10.1088/0266-5611/21/3/018. |
[7] |
H. Brezis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, 1983. |
[8] |
Q. Chen, H. Haddar, A. Lechleiter and P. Monk, A sampling method for inverse scattering in the time domain, Inverse Problems, 26 (2010), 085001, 17pp.
doi: 10.1088/0266-5611/26/8/085001. |
[9] |
J. Dardé, Quasi-reversibility and Level Set Methods Applied to Elliptic Inverse Problems, PhD Université Paris-Diderot - Paris Ⅶ, 2010. |
[10] |
J. Dardé,
Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems, Inverse Problems and Imaging, 10 (2016), 379-407.
doi: 10.3934/ipi.2016005. |
[11] |
A. Doubova and E. Fernández-Cara,
Some geometric inverse problems for the linear wave equation, Inverse Problems and Imaging, 9 (2015), 371-393.
doi: 10.3934/ipi.2015.9.371. |
[12] |
A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer-Verlag, New York, 2004.
doi: 10.1007/978-1-4757-4355-5. |
[13] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equation of Second Order, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[14] |
A. Henrot and M. Pierre, Variation et Optimisation de Formes, Une Analyse Géométrique, Springer, Paris, 2005.
doi: 10.1007/3-540-37689-5. |
[15] |
V. Isakov, Inverse obstacle problems, Inverse Problems, 25 (2009), 123002, 18pp.
doi: 10.1088/0266-5611/25/12/123002. |
[16] |
M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht, 2004.
doi: 10.1515/9783110915549. |
[17] |
R. Lattès and J.-L. Lions, Méthode de Quasi-réversibilité et Applications, Dunod, Paris, 1967. |
[18] |
C. D. Lines and S. N. Chandler-Wilde,
A time domain point source method for inverse scattering by rough surfaces, Computing, 75 (2005), 157-180.
doi: 10.1007/s00607-004-0109-8. |
[19] |
J.-L. Lions, E. Magenes, Problèmes aux Limites non Homogènes et Applications, Vol. 2, Dunod, Paris, 1968. |
[20] |
J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation De Systèmes Distribués, Tome 1, Masson, Paris, 1988. |
[21] |
E. Lunéville and N. Salles, eXtended Library of Finite Elements in C++, http://uma.ensta-paristech.fr/soft/XLiFE++. |
[22] |
L. Oksanen, Solving an inverse obstacle problem for the wave equation by using the boundary control method, Inverse Problems, 29 (2013), 035004, 12pp.
doi: 10.1088/0266-5611/29/3/035004. |
[23] |
S. Y. Oudot, L. J. Guibas, J. Gao and Y. Wang, Geodesic delaunay triangulations in bounded planar domains, ACM Trans. Algorithms, 6 (2010), Art. 67, 47 pp.
doi: 10.1145/1824777.1824787. |
[24] |
L. Robbiano,
Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques, Communications in Partial Differential Equations, 16 (1991), 789-800.
doi: 10.1080/03605309108820778. |






[1] |
Laurent Bourgeois, Jérémi Dardé. A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Problems and Imaging, 2010, 4 (3) : 351-377. doi: 10.3934/ipi.2010.4.351 |
[2] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems and Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[3] |
Jérémi Dardé. Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Inverse Problems and Imaging, 2016, 10 (2) : 379-407. doi: 10.3934/ipi.2016005 |
[4] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[5] |
Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems and Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971 |
[6] |
Zhiyuan Li, Yikan Liu, Masahiro Yamamoto. Inverse source problem for a one-dimensional time-fractional diffusion equation and unique continuation for weak solutions. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022027 |
[7] |
Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems and Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469 |
[8] |
Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225 |
[9] |
Lekbir Afraites. A new coupled complex boundary method (CCBM) for an inverse obstacle problem. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 23-40. doi: 10.3934/dcdss.2021069 |
[10] |
Muriel Boulakia. Quantification of the unique continuation property for the nonstationary Stokes problem. Mathematical Control and Related Fields, 2016, 6 (1) : 27-52. doi: 10.3934/mcrf.2016.6.27 |
[11] |
Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations and Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032 |
[12] |
Laurent Bourgeois. Quantification of the unique continuation property for the heat equation. Mathematical Control and Related Fields, 2017, 7 (3) : 347-367. doi: 10.3934/mcrf.2017012 |
[13] |
Can Zhang. Quantitative unique continuation for the heat equation with Coulomb potentials. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1097-1116. doi: 10.3934/mcrf.2018047 |
[14] |
Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems and Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479 |
[15] |
Henning Struchtrup. Unique moment set from the order of magnitude method. Kinetic and Related Models, 2012, 5 (2) : 417-440. doi: 10.3934/krm.2012.5.417 |
[16] |
Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems and Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131 |
[17] |
Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems and Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77 |
[18] |
Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102 |
[19] |
Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121 |
[20] |
Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]