
-
Previous Article
A stochastic approach to reconstruction of faults in elastic half space
- IPI Home
- This Issue
-
Next Article
CT image reconstruction on a low dimensional manifold
A variational gamma correction model for image contrast enhancement
1. | School of Mathematical Sciences, Tongji University, Shanghai, China |
2. | Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China |
Image contrast enhancement plays an important role in computer vision and pattern recognition by improving image quality. The main aim of this paper is to propose and develop a variational model for contrast enhancement of color images based on local gamma correction. The proposed variational model contains an energy functional to determine a local gamma function such that the gamma values can be set according to the local information of the input image. A spatial regularization of the gamma function is incorporated into the functional so that the contrast in an image can be modified by using the information of each pixel and its neighboring pixels. Another regularization term is also employed to preserve the ordering of pixel values. Theoretically, the existence and uniqueness of the minimizer of the proposed model are established. A fast algorithm can be developed to solve the resulting minimization model. Experimental results on benchmark images are presented to show that the performance of the proposed model are better than that of the other testing methods.
References:
[1] |
T. Arici, S. Dikbas and Y. Altunbasak,
A histogram modification framework and its application for image contrast enhancement, IEEE Transactions on Image Processing, 18 (2009), 1921-1935.
doi: 10.1109/TIP.2009.2021548. |
[2] |
A. Beghdadi and A. L. Negrate,
Contrast enhancement technique based on local detection of edges, Comput. Vis, Graph., Image Process., 46 (1989), 162-174.
|
[3] |
R. Chan, M. Nikolova and Y. Wen, A variational approach for exact histogram specification, Scale Space and Variational Methods in Computer Vision, (2012), 86–97. |
[4] |
S. D. Chen and A. R. Ramli,
Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation, IEEE Transactions on Consumer Electronics, 49 (2003), 1301-1309.
|
[5] |
H.-D. Cheng and H. J. Xu,
A novel fuzzy logic approach to contrast enhancement, Pattern Recognition, 33 (2000), 809-819.
|
[6] |
Y.-S. Chiu, F.-C. Cheng and S.-C. Huang,
Efficient contrast enhancement using adaptive gamma correction and cumulative intensity distribution, IEEE International Conference on Systems, Man, and Cybernetics, 22 (2013), 1032-1041.
doi: 10.1109/TIP.2012.2226047. |
[7] |
S. Deivalakshmi, A. Saha and R. Pandeeswari, Raised Cosine Adaptive Gamma Correction for Efficient Image and Video Contrast Enhancement, TENCON 2017-2017 IEEE Region 10 Conference, Nov. 2017. |
[8] |
J. Eckstein and D. Bertsekas,
On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204. |
[9] |
L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 1998. |
[10] |
M. FarshbafDoustar and H. Hassanpour, A locally-adaptive approach for image gamma correction, 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), 2010, 73–76. |
[11] |
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, 2002. |
[12] |
S.-C. Huang, F.-C. Cheng and Y.-S. Chiu,
Efficient contrast enhancement using adaptive gamma correction with weighting distribution, IEEE Transactions on Image Processing, 22 (2013), 1032-1041.
doi: 10.1109/TIP.2012.2226047. |
[13] |
A. Laine, J. Fan and W. Yang,
Wavelets for contrast enhancement of digital mammography, IEEE Engineering in Medicine and Biology Magazine, 14 (1995), 536-550.
|
[14] |
Y. Li, X. Liu and Y. Liu, Adaptive local gamma correction based on mean value adjustment, 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), 2015, 1858–1863. |
[15] |
S. C. Matz and R. J. P. de Figueiredo,
A nonlinear image contrast sharpening approach based on munsell's scale, IEEE Transactions on Image Processing, 15 (2016), 900-909.
|
[16] |
M. Nikolova, A fast algorithm for exact histogram specification. simple extension to colour images, Scale Space and Variational Methods in Computer Vision, 2013,174–185. |
[17] |
M. Nikolova and G. Steidl,
Fast hue and range preserving histogram specification: Theory and new algorithms for color image enhancement, IEEE Transactions on Image Processing, 23 (2014), 4087-4100.
doi: 10.1109/TIP.2014.2337755. |
[18] |
M. Nikolova and G. Steidl,
Fast ordering algorithm for exact histogram specification, IEEE Transactions on Image Processing, 23 (2014), 5274-5283.
doi: 10.1109/TIP.2014.2364119. |
[19] |
M. Nikolova, Y. Wen and R. Chan,
Exact histogram specification for digital images using a variational approach, Journal of Mathematical Imaging and Vision, 46 (2013), 309-325.
doi: 10.1007/s10851-012-0401-8. |
[20] |
M. K. Ng and W. Wang,
A total variation model for retinex, SIAM J. Imaging Sciences, 4 (2011), 345-365.
doi: 10.1137/100806588. |
[21] |
F. Pierre, J. F. Aujol, A. Bugeau, G. Steidl and V. T. Ta,
Variational contrast enhancement of gray-scale and RGB images, Journal of Mathematical Imaging and Vision, 57 (2017), 99-116.
doi: 10.1007/s10851-016-0670-8. |
[22] |
F. Pierre, J. F. Aujol, A. Bugeau, G. Steidl and V. T. Ta, Hue-preserving perceptual contrast enhancement, Image Processing (ICIP), IEEE International Conference on, 2016, 4067–4071. |
[23] |
A. Polesel, G. Ramponi and V. Mathews,
Image enhancement via adaptive unsharp masking, IEEE Trans. Image Process., 9 (2000), 505-510.
|
[24] |
E. Provenzi and V. Caselles,
A wavelet perspective on variational perceptually-inspired color enhancement, International Journal of Computer Vision, 106 (2014), 153-171.
doi: 10.1007/s11263-013-0651-y. |
[25] |
A. Rizzi, C. Gatta and D. Marini,
A new algorithm for unsupervised global and local color correction, Pattern Recognition Letters, 24 (2003), 1663-1677.
|
[26] |
J. C. Russ, The Image Processing Handbook, Fifth edition. CRC Press, Boca Raton, FL, 2007.
![]() ![]() |
[27] |
C. E. Shannon,
A mathematical theory of communication, Bell System Technical Jornal, 27 (1948), 379-423.
doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[28] |
R. Sherrier and G. Johnson,
Regionally adaptive histogram equalization of the chest, IEEE Trans. Med. Imag., MI-6 (1987), 1-7.
|
[29] |
J. F. Shi and Y. Cai, A novel image enhancement method using local Gamma correction with three-level thresholding, Proceedings of the 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, 2011,374–378. |
[30] |
Y. H. Shi, J. F. Yang and R. B. Wu, Reducing illumination based on nonlinear Gamma correction, Proceedings of the IEEE International Conference on Image Processing, (2007), 529–532. |
[31] |
J. Tang, X. Liu and Q. Sun,
A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms, IEEE J.Sel. Topics Signal Process., 3 (2009), 74-80.
|
[32] |
Z. Wang, A. Bovik, H. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. on Image Processing, 13 (2004), 600–612. |
[33] |
W. Wang, C. Chen, M. K. Ng, An Image Pixel Based Variational Model for Histogram Equalization, Journal of Visual Communication and Image Representation, vol. 34, pp. 118-134, January 2016. |
[34] |
W. Wang and M. K. Ng,
A variational histogram equalization method for image contrast enhancement, SIAM J. Imaging Sciences, 6 (2013), 1823-1849.
doi: 10.1137/130909196. |
[35] |
G. Xu, J. Su and H. D. Pan, An image enhancement method based on Gamma correction, Proceedings of the 2nd International Symposium on Computational Intelligence and Design, 2009, 60–63. |
show all references
References:
[1] |
T. Arici, S. Dikbas and Y. Altunbasak,
A histogram modification framework and its application for image contrast enhancement, IEEE Transactions on Image Processing, 18 (2009), 1921-1935.
doi: 10.1109/TIP.2009.2021548. |
[2] |
A. Beghdadi and A. L. Negrate,
Contrast enhancement technique based on local detection of edges, Comput. Vis, Graph., Image Process., 46 (1989), 162-174.
|
[3] |
R. Chan, M. Nikolova and Y. Wen, A variational approach for exact histogram specification, Scale Space and Variational Methods in Computer Vision, (2012), 86–97. |
[4] |
S. D. Chen and A. R. Ramli,
Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation, IEEE Transactions on Consumer Electronics, 49 (2003), 1301-1309.
|
[5] |
H.-D. Cheng and H. J. Xu,
A novel fuzzy logic approach to contrast enhancement, Pattern Recognition, 33 (2000), 809-819.
|
[6] |
Y.-S. Chiu, F.-C. Cheng and S.-C. Huang,
Efficient contrast enhancement using adaptive gamma correction and cumulative intensity distribution, IEEE International Conference on Systems, Man, and Cybernetics, 22 (2013), 1032-1041.
doi: 10.1109/TIP.2012.2226047. |
[7] |
S. Deivalakshmi, A. Saha and R. Pandeeswari, Raised Cosine Adaptive Gamma Correction for Efficient Image and Video Contrast Enhancement, TENCON 2017-2017 IEEE Region 10 Conference, Nov. 2017. |
[8] |
J. Eckstein and D. Bertsekas,
On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204. |
[9] |
L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 1998. |
[10] |
M. FarshbafDoustar and H. Hassanpour, A locally-adaptive approach for image gamma correction, 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), 2010, 73–76. |
[11] |
R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd Edition, Prentice Hall, 2002. |
[12] |
S.-C. Huang, F.-C. Cheng and Y.-S. Chiu,
Efficient contrast enhancement using adaptive gamma correction with weighting distribution, IEEE Transactions on Image Processing, 22 (2013), 1032-1041.
doi: 10.1109/TIP.2012.2226047. |
[13] |
A. Laine, J. Fan and W. Yang,
Wavelets for contrast enhancement of digital mammography, IEEE Engineering in Medicine and Biology Magazine, 14 (1995), 536-550.
|
[14] |
Y. Li, X. Liu and Y. Liu, Adaptive local gamma correction based on mean value adjustment, 2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), 2015, 1858–1863. |
[15] |
S. C. Matz and R. J. P. de Figueiredo,
A nonlinear image contrast sharpening approach based on munsell's scale, IEEE Transactions on Image Processing, 15 (2016), 900-909.
|
[16] |
M. Nikolova, A fast algorithm for exact histogram specification. simple extension to colour images, Scale Space and Variational Methods in Computer Vision, 2013,174–185. |
[17] |
M. Nikolova and G. Steidl,
Fast hue and range preserving histogram specification: Theory and new algorithms for color image enhancement, IEEE Transactions on Image Processing, 23 (2014), 4087-4100.
doi: 10.1109/TIP.2014.2337755. |
[18] |
M. Nikolova and G. Steidl,
Fast ordering algorithm for exact histogram specification, IEEE Transactions on Image Processing, 23 (2014), 5274-5283.
doi: 10.1109/TIP.2014.2364119. |
[19] |
M. Nikolova, Y. Wen and R. Chan,
Exact histogram specification for digital images using a variational approach, Journal of Mathematical Imaging and Vision, 46 (2013), 309-325.
doi: 10.1007/s10851-012-0401-8. |
[20] |
M. K. Ng and W. Wang,
A total variation model for retinex, SIAM J. Imaging Sciences, 4 (2011), 345-365.
doi: 10.1137/100806588. |
[21] |
F. Pierre, J. F. Aujol, A. Bugeau, G. Steidl and V. T. Ta,
Variational contrast enhancement of gray-scale and RGB images, Journal of Mathematical Imaging and Vision, 57 (2017), 99-116.
doi: 10.1007/s10851-016-0670-8. |
[22] |
F. Pierre, J. F. Aujol, A. Bugeau, G. Steidl and V. T. Ta, Hue-preserving perceptual contrast enhancement, Image Processing (ICIP), IEEE International Conference on, 2016, 4067–4071. |
[23] |
A. Polesel, G. Ramponi and V. Mathews,
Image enhancement via adaptive unsharp masking, IEEE Trans. Image Process., 9 (2000), 505-510.
|
[24] |
E. Provenzi and V. Caselles,
A wavelet perspective on variational perceptually-inspired color enhancement, International Journal of Computer Vision, 106 (2014), 153-171.
doi: 10.1007/s11263-013-0651-y. |
[25] |
A. Rizzi, C. Gatta and D. Marini,
A new algorithm for unsupervised global and local color correction, Pattern Recognition Letters, 24 (2003), 1663-1677.
|
[26] |
J. C. Russ, The Image Processing Handbook, Fifth edition. CRC Press, Boca Raton, FL, 2007.
![]() ![]() |
[27] |
C. E. Shannon,
A mathematical theory of communication, Bell System Technical Jornal, 27 (1948), 379-423.
doi: 10.1002/j.1538-7305.1948.tb01338.x. |
[28] |
R. Sherrier and G. Johnson,
Regionally adaptive histogram equalization of the chest, IEEE Trans. Med. Imag., MI-6 (1987), 1-7.
|
[29] |
J. F. Shi and Y. Cai, A novel image enhancement method using local Gamma correction with three-level thresholding, Proceedings of the 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, 2011,374–378. |
[30] |
Y. H. Shi, J. F. Yang and R. B. Wu, Reducing illumination based on nonlinear Gamma correction, Proceedings of the IEEE International Conference on Image Processing, (2007), 529–532. |
[31] |
J. Tang, X. Liu and Q. Sun,
A direct image contrast enhancement algorithm in the wavelet domain for screening mammograms, IEEE J.Sel. Topics Signal Process., 3 (2009), 74-80.
|
[32] |
Z. Wang, A. Bovik, H. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. on Image Processing, 13 (2004), 600–612. |
[33] |
W. Wang, C. Chen, M. K. Ng, An Image Pixel Based Variational Model for Histogram Equalization, Journal of Visual Communication and Image Representation, vol. 34, pp. 118-134, January 2016. |
[34] |
W. Wang and M. K. Ng,
A variational histogram equalization method for image contrast enhancement, SIAM J. Imaging Sciences, 6 (2013), 1823-1849.
doi: 10.1137/130909196. |
[35] |
G. Xu, J. Su and H. D. Pan, An image enhancement method based on Gamma correction, Proceedings of the 2nd International Symposium on Computational Intelligence and Design, 2009, 60–63. |








ALC | 0.0770 | 0.0625 | 0.0569 | 0.0562 | 0.0659 | 0.0630 | 0.0569 | 0.0537 |
DE | 7.8509 | 7.7954 | 7.7525 | 7.7454 | 7.7326 | 7.7525 | 7.7525 | 7.7228 |
ALC | 0.0770 | 0.0625 | 0.0569 | 0.0562 | 0.0659 | 0.0630 | 0.0569 | 0.0537 |
DE | 7.8509 | 7.7954 | 7.7525 | 7.7454 | 7.7326 | 7.7525 | 7.7525 | 7.7228 |
measures | figure | GC1 | GC2 | GRC-AGC | LRC-AGC | GHE | Proposed |
ALC | 3 | 0.0402 | 0.0475 | 0.0805 | 0.1411 | 0.0540 | 0.0622 |
4 | 0.0300 | 0.0383 | 0.0536 | 0.0807 | 0.0751 | 0.0401 | |
5 | 0.0052 | 0.0053 | 0.0511 | 0.0398 | 0.0375 | 0.0189 | |
6 | 0.2315 | 0.2610 | 0.3438 | 0.2569 | 0.2643 | 0.2488 | |
DE | 3 | 6.0297 | 5.5654 | 6.0067 | 7.8225 | 5.9928 | 7.4358 |
4 | 6.0746 | 5.4781 | 6.1407 | 7.7833 | 6.1230 | 7.6986 | |
5 | 6.8130 | 5.9722 | 6.9451 | 7.5226 | 7.1981 | 7.5682 | |
6 | 4.9458 | 4.1280 | 4.5059 | 4.9025 | 5.3131 | 5.2316 |
measures | figure | GC1 | GC2 | GRC-AGC | LRC-AGC | GHE | Proposed |
ALC | 3 | 0.0402 | 0.0475 | 0.0805 | 0.1411 | 0.0540 | 0.0622 |
4 | 0.0300 | 0.0383 | 0.0536 | 0.0807 | 0.0751 | 0.0401 | |
5 | 0.0052 | 0.0053 | 0.0511 | 0.0398 | 0.0375 | 0.0189 | |
6 | 0.2315 | 0.2610 | 0.3438 | 0.2569 | 0.2643 | 0.2488 | |
DE | 3 | 6.0297 | 5.5654 | 6.0067 | 7.8225 | 5.9928 | 7.4358 |
4 | 6.0746 | 5.4781 | 6.1407 | 7.7833 | 6.1230 | 7.6986 | |
5 | 6.8130 | 5.9722 | 6.9451 | 7.5226 | 7.1981 | 7.5682 | |
6 | 4.9458 | 4.1280 | 4.5059 | 4.9025 | 5.3131 | 5.2316 |
measures | Figure | GC1 | GC2 | GRC-AGC | LRC-AGC | GHE | Proposed |
7a | 0.6823 | 0.5214 | 0.8370 | 0.7559 | 0.8372 | 0.8983 | |
7b | 0.7724 | 0.5202 | 0.9205 | 0.7806 | 0.8414 | 0.9609 | |
SSIM | 7c | 0.7876 | 0.5168 | 0.9268 | 0.7769 | 0.8432 | 0.9408 |
8a | 0.8189 | 0.6188 | 0.9699 | 0.8459 | 0.7927 | 0.9837 | |
8b | 0.8356 | 0.6746 | 0.9280 | 0.6213 | 0.8759 | 0.9559 | |
8c | 0.8351 | 0.6240 | 0.9511 | 0.7340 | 0.9006 | 0.9668 | |
7a | 12.8072 | 12.5648 | 20.9844 | 15.4181 | 18.2775 | 22.8673 | |
7b | 16.4475 | 11.0526 | 23.3122 | 16.4290 | 18.5631 | 26.2987 | |
PSNR | 7c | 17.4108 | 9.9382 | 21.1454 | 16.0486 | 18.7101 | 21.2444 |
8a | 15.5798 | 10.9477 | 26.6400 | 21.1583 | 16.7663 | 31.3392 | |
8b | 16.7286 | 11.0620 | 22.8416 | 14.6840 | 22.8626 | 29.2247 | |
8c | 18.5565 | 12.6350 | 23.7865 | 17.3074 | 20.9938 | 26.8890 |
measures | Figure | GC1 | GC2 | GRC-AGC | LRC-AGC | GHE | Proposed |
7a | 0.6823 | 0.5214 | 0.8370 | 0.7559 | 0.8372 | 0.8983 | |
7b | 0.7724 | 0.5202 | 0.9205 | 0.7806 | 0.8414 | 0.9609 | |
SSIM | 7c | 0.7876 | 0.5168 | 0.9268 | 0.7769 | 0.8432 | 0.9408 |
8a | 0.8189 | 0.6188 | 0.9699 | 0.8459 | 0.7927 | 0.9837 | |
8b | 0.8356 | 0.6746 | 0.9280 | 0.6213 | 0.8759 | 0.9559 | |
8c | 0.8351 | 0.6240 | 0.9511 | 0.7340 | 0.9006 | 0.9668 | |
7a | 12.8072 | 12.5648 | 20.9844 | 15.4181 | 18.2775 | 22.8673 | |
7b | 16.4475 | 11.0526 | 23.3122 | 16.4290 | 18.5631 | 26.2987 | |
PSNR | 7c | 17.4108 | 9.9382 | 21.1454 | 16.0486 | 18.7101 | 21.2444 |
8a | 15.5798 | 10.9477 | 26.6400 | 21.1583 | 16.7663 | 31.3392 | |
8b | 16.7286 | 11.0620 | 22.8416 | 14.6840 | 22.8626 | 29.2247 | |
8c | 18.5565 | 12.6350 | 23.7865 | 17.3074 | 20.9938 | 26.8890 |
[1] |
Xiaochun Gu, Fang Han, Zhijie Wang, Kaleem Kashif, Wenlian Lu. Enhancement of gamma oscillations in E/I neural networks by increase of difference between external inputs. Electronic Research Archive, 2021, 29 (5) : 3227-3241. doi: 10.3934/era.2021035 |
[2] |
Xuefeng Zhang, Hui Yan. Image enhancement algorithm using adaptive fractional differential mask technique. Mathematical Foundations of Computing, 2019, 2 (4) : 347-359. doi: 10.3934/mfc.2019022 |
[3] |
Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089 |
[4] |
Lori Badea, Marius Cocou. Approximation results and subspace correction algorithms for implicit variational inequalities. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1507-1524. doi: 10.3934/dcdss.2013.6.1507 |
[5] |
Elena Beretta, Markus Grasmair, Monika Muszkieta, Otmar Scherzer. A variational algorithm for the detection of line segments. Inverse Problems and Imaging, 2014, 8 (2) : 389-408. doi: 10.3934/ipi.2014.8.389 |
[6] |
Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103 |
[7] |
Zhi-Feng Pang, Yu-Fei Yang. Semismooth Newton method for minimization of the LLT model. Inverse Problems and Imaging, 2009, 3 (4) : 677-691. doi: 10.3934/ipi.2009.3.677 |
[8] |
Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control and Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79 |
[9] |
M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial and Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29 |
[10] |
Jie Sun, Honglei Xu, Min Zhang. A new interpretation of the progressive hedging algorithm for multistage stochastic minimization problems. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1655-1662. doi: 10.3934/jimo.2019022 |
[11] |
Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems and Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645 |
[12] |
Shui-Nee Chow, Ke Yin, Hao-Min Zhou, Ali Behrooz. Solving inverse source problems by the Orthogonal Solution and Kernel Correction Algorithm (OSKCA) with applications in fluorescence tomography. Inverse Problems and Imaging, 2014, 8 (1) : 79-102. doi: 10.3934/ipi.2014.8.79 |
[13] |
Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015 |
[14] |
Hyeuknam Kwon, Yoon Mo Jung, Jaeseok Park, Jin Keun Seo. A new computer-aided method for detecting brain metastases on contrast-enhanced MR images. Inverse Problems and Imaging, 2014, 8 (2) : 491-505. doi: 10.3934/ipi.2014.8.491 |
[15] |
Qingzhi Yang. The revisit of a projection algorithm with variable steps for variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 211-217. doi: 10.3934/jimo.2005.1.211 |
[16] |
Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201 |
[17] |
Yanfei You, Suhong Jiang. Improved Lagrangian-PPA based prediction correction method for linearly constrained convex optimization. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021174 |
[18] |
Luchuan Ceng, Qamrul Hasan Ansari, Jen-Chih Yao. Extragradient-projection method for solving constrained convex minimization problems. Numerical Algebra, Control and Optimization, 2011, 1 (3) : 341-359. doi: 10.3934/naco.2011.1.341 |
[19] |
Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507 |
[20] |
Lei Wu, Zhe Sun. A new spectral method for $l_1$-regularized minimization. Inverse Problems and Imaging, 2015, 9 (1) : 257-272. doi: 10.3934/ipi.2015.9.257 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]