
-
Previous Article
Inverse obstacle scattering for elastic waves in three dimensions
- IPI Home
- This Issue
-
Next Article
A stochastic approach to reconstruction of faults in elastic half space
On periodic parameter identification in stochastic differential equations
Shanghai Key Laboratory for Contemporary Applied Mathematics, Key Laboratory of Mathematics for Nonlinear Sciences and School of Mathematical Sciences, Fudan University, Shanghai 200433, China |
Periodic parameters are common and important in stochastic differential equations (SDEs) arising in many contemporary scientific and engineering fields involving dynamical processes. These parameters include the damping coefficient, the volatility or diffusion coefficient and possibly an external force. Identification of these periodic parameters allows a better understanding of the dynamical processes and their hidden intermittent instability. Conventional approaches usually assume that one of the parameters is known and focus on the recovery of rest parameters. By introducing the decorrelation time and calculating the standard Gaussian statistics (mean, variance) explicitly for the scalar Langevin equations with periodic parameters, we propose a parameter identification approach to simultaneously recovering all these parameters by observing a single trajectory of SDEs. Such an approach is summarized in form of regularization schemes with noisy operators and noisy right-hand sides and is further extended to parameter identification of SDEs which are indirectly observed by other random processes. Numerical examples show that our approach performs well in stable and weakly unstable regimes but may fail in strongly unstable regime which is induced by the strong intermittent instability itself.
References:
[1] |
G. Bao, C. Chen and P. Li,
Inverse random source scattering problems in several dimensions, SIAM/ASA Journal on Uncertainty Quantification, 4 (2016), 1263-1287.
doi: 10.1137/16M1067470. |
[2] |
G. Bao, S. N. Chow and H. Zhou,
An inverse random source problem for the Helmholtz equation, Mathematics of Computation, 83 (2014), 215-233.
doi: 10.1090/S0025-5718-2013-02730-5. |
[3] |
G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2013), 015006, 16 pp.
doi: 10.1088/0266-5611/29/1/015006. |
[4] |
G. Bao and X. Xu, Identification of the material properties in nonuniform nanostructures, Inverse Problems, 31 (2015), 125003, 11 pp.
doi: 10.1088/0266-5611/31/12/125003. |
[5] |
M. Branicki and A. J. Majda,
Quantifying Bayesian filter performance for turbulent dynamical systems through information theory, Commun. Math. Sci., 12 (2014), 901-978.
doi: 10.4310/CMS.2014.v12.n5.a6. |
[6] |
D. G. Cacuci, I. M. Navon and M. Ionescu-Bujor, Computational Methods for Data Evaluation
and Assimilation, CRC Press, Boca Raton, FL, 2014. |
[7] |
N. Chen, D. Giannakis, R. Herbei and A. J. Majda,
An MCMC algorithm for parameter estimation in signals with hidden intermittent instability, SIAM/ASA Journal on Uncertainty Quantification, 2 (2014), 647-669.
doi: 10.1137/130944977. |
[8] |
M. Cristofol and L. Roques, Simultaneous determination of the drift and diffusion coefficients in stochastic differential equations, Inverse Problems, 33 (2017), 095006, 12 pp.
doi: 10.1088/1361-6420/aa7a1c. |
[9] |
F. Dunker and T. Hohage, On parameter identification in stochastic differential equations by penalized maximum likelihood, Inverse Problems, 30 (2014), 095001, 20 pp.
doi: 10.1088/0266-5611/30/9/095001. |
[10] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375. Kluwer Academic Publishers Group, Dordrecht, 1996. viii+321 pp. |
[11] |
H. Gao, K. Wang, F. Wei and X. Ding,
Massera-type theorem and asymptotically periodic logistic equations, Nonlinear Analysis: Real World Applications, 7 (2006), 1268-1283.
doi: 10.1016/j.nonrwa.2005.11.008. |
[12] |
B. Gershgorin, J. Harlim and A. J. Majda,
Test models for improving filtering with model errors through stochastic parameter estimation, Journal of Computational Physics, 229 (2010), 1-31.
doi: 10.1016/j.jcp.2009.08.019. |
[13] |
A. Golightly and D. J. Wilkinson,
Bayesian inference for stochastic kinetic models using a diffusion approximation, Biometrics, 61 (2005), 781-788.
doi: 10.1111/j.1541-0420.2005.00345.x. |
[14] |
B. Kaltenbacher and B. Pedretscher,
Parameter estimation in SDEs via the Fokker-Planck equation: Likelihood function and adjoint based gradient computation, Journal of Mathematical Analysis and Applications, 465 (2018), 872-884.
doi: 10.1016/j.jmaa.2018.05.048. |
[15] |
W. J. Lee and A. Stuart,
Derivation and analysis of simplified filters, Communications in Mathematical Sciences, 15 (2017), 413-450.
doi: 10.4310/CMS.2017.v15.n2.a6. |
[16] |
P. Li, An inverse random source scattering problem in inhomogeneous media, Inverse Problems, 27 (2011), 035004, 22 pp.
doi: 10.1088/0266-5611/27/3/035004. |
[17] |
S. Lu and S. V. Pereverzev, Regularization Theory for Ill-Posed Problems: Selected Topics, Inverse and Ill-posed Problems Series, 58 De Gruyter, Berlin, 2013.
doi: 10.1515/9783110286496. |
[18] |
S. Lu, S. V. Pereverzev, Y. Shao and U. Tautenhahn,
On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, Journal of Integral Equations and Application, 22 (2010), 483-517.
doi: 10.1216/JIE-2010-22-3-483. |
[19] |
A. J. Majda and J. Harlim, Filtering Complex Turbulent Systems, Cambridge University Press, Cambridge, 2012. x+357 pp.
doi: 10.1017/CBO9781139061308. |
[20] |
A. J. Majda and X. Wang, Non-linear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511616778.![]() ![]() ![]() |
[21] |
B. Øksendal, Stochastic Differential Equations, 6$^{th}$ ed., Springer, Heidelberg, 2003.
doi: 10.1007/978-3-642-14394-6. |
[22] |
O. Papaspiliopoulos, Y Pokern, G. O. Roberts and A. M. Stuart,
Nonparametric estimation of diffusions: A differential equations approach, Biometrika, 99 (2012), 511-531.
doi: 10.1093/biomet/ass034. |
[23] |
G. O. Roberts and O. Stramer,
On inference for partially observed nonlinear diffusion model using Metropolis–Hastings algorithms, Biometrika, 88 (2001), 603-621.
doi: 10.1093/biomet/88.3.603. |
[24] |
H. Sorensen,
Parametric inference for diffusion processes observed at discrete points in time: A survey, International Statistical Review, 72 (2004), 337-354.
doi: 10.1111/j.1751-5823.2004.tb00241.x. |
[25] |
O. Stramer and M. Bognar,
Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach, Bayesian Analysis, 6 (2011), 231-258.
doi: 10.1214/11-BA608. |
[26] |
A. M. Stuart,
Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.
doi: 10.1017/S0962492910000061. |
[27] |
U. Tautenhahn,
Regularization of linear ill-posed problems with noisy right hand side and noisy operator, J. Inv. Ill-Posed Problems, 16 (2008), 507-523.
doi: 10.1515/JIIP.2008.027. |
[28] |
C. R. Vogel, Computational Methods for Inverse Problems, With a foreword by H. T. Banks. Frontiers in Applied Mathematics, 23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898717570. |
show all references
References:
[1] |
G. Bao, C. Chen and P. Li,
Inverse random source scattering problems in several dimensions, SIAM/ASA Journal on Uncertainty Quantification, 4 (2016), 1263-1287.
doi: 10.1137/16M1067470. |
[2] |
G. Bao, S. N. Chow and H. Zhou,
An inverse random source problem for the Helmholtz equation, Mathematics of Computation, 83 (2014), 215-233.
doi: 10.1090/S0025-5718-2013-02730-5. |
[3] |
G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2013), 015006, 16 pp.
doi: 10.1088/0266-5611/29/1/015006. |
[4] |
G. Bao and X. Xu, Identification of the material properties in nonuniform nanostructures, Inverse Problems, 31 (2015), 125003, 11 pp.
doi: 10.1088/0266-5611/31/12/125003. |
[5] |
M. Branicki and A. J. Majda,
Quantifying Bayesian filter performance for turbulent dynamical systems through information theory, Commun. Math. Sci., 12 (2014), 901-978.
doi: 10.4310/CMS.2014.v12.n5.a6. |
[6] |
D. G. Cacuci, I. M. Navon and M. Ionescu-Bujor, Computational Methods for Data Evaluation
and Assimilation, CRC Press, Boca Raton, FL, 2014. |
[7] |
N. Chen, D. Giannakis, R. Herbei and A. J. Majda,
An MCMC algorithm for parameter estimation in signals with hidden intermittent instability, SIAM/ASA Journal on Uncertainty Quantification, 2 (2014), 647-669.
doi: 10.1137/130944977. |
[8] |
M. Cristofol and L. Roques, Simultaneous determination of the drift and diffusion coefficients in stochastic differential equations, Inverse Problems, 33 (2017), 095006, 12 pp.
doi: 10.1088/1361-6420/aa7a1c. |
[9] |
F. Dunker and T. Hohage, On parameter identification in stochastic differential equations by penalized maximum likelihood, Inverse Problems, 30 (2014), 095001, 20 pp.
doi: 10.1088/0266-5611/30/9/095001. |
[10] |
H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and its Applications, 375. Kluwer Academic Publishers Group, Dordrecht, 1996. viii+321 pp. |
[11] |
H. Gao, K. Wang, F. Wei and X. Ding,
Massera-type theorem and asymptotically periodic logistic equations, Nonlinear Analysis: Real World Applications, 7 (2006), 1268-1283.
doi: 10.1016/j.nonrwa.2005.11.008. |
[12] |
B. Gershgorin, J. Harlim and A. J. Majda,
Test models for improving filtering with model errors through stochastic parameter estimation, Journal of Computational Physics, 229 (2010), 1-31.
doi: 10.1016/j.jcp.2009.08.019. |
[13] |
A. Golightly and D. J. Wilkinson,
Bayesian inference for stochastic kinetic models using a diffusion approximation, Biometrics, 61 (2005), 781-788.
doi: 10.1111/j.1541-0420.2005.00345.x. |
[14] |
B. Kaltenbacher and B. Pedretscher,
Parameter estimation in SDEs via the Fokker-Planck equation: Likelihood function and adjoint based gradient computation, Journal of Mathematical Analysis and Applications, 465 (2018), 872-884.
doi: 10.1016/j.jmaa.2018.05.048. |
[15] |
W. J. Lee and A. Stuart,
Derivation and analysis of simplified filters, Communications in Mathematical Sciences, 15 (2017), 413-450.
doi: 10.4310/CMS.2017.v15.n2.a6. |
[16] |
P. Li, An inverse random source scattering problem in inhomogeneous media, Inverse Problems, 27 (2011), 035004, 22 pp.
doi: 10.1088/0266-5611/27/3/035004. |
[17] |
S. Lu and S. V. Pereverzev, Regularization Theory for Ill-Posed Problems: Selected Topics, Inverse and Ill-posed Problems Series, 58 De Gruyter, Berlin, 2013.
doi: 10.1515/9783110286496. |
[18] |
S. Lu, S. V. Pereverzev, Y. Shao and U. Tautenhahn,
On the generalized discrepancy principle for Tikhonov regularization in Hilbert scales, Journal of Integral Equations and Application, 22 (2010), 483-517.
doi: 10.1216/JIE-2010-22-3-483. |
[19] |
A. J. Majda and J. Harlim, Filtering Complex Turbulent Systems, Cambridge University Press, Cambridge, 2012. x+357 pp.
doi: 10.1017/CBO9781139061308. |
[20] |
A. J. Majda and X. Wang, Non-linear Dynamics and Statistical Theories for Basic Geophysical Flows, Cambridge University Press, Cambridge, 2006.
doi: 10.1017/CBO9780511616778.![]() ![]() ![]() |
[21] |
B. Øksendal, Stochastic Differential Equations, 6$^{th}$ ed., Springer, Heidelberg, 2003.
doi: 10.1007/978-3-642-14394-6. |
[22] |
O. Papaspiliopoulos, Y Pokern, G. O. Roberts and A. M. Stuart,
Nonparametric estimation of diffusions: A differential equations approach, Biometrika, 99 (2012), 511-531.
doi: 10.1093/biomet/ass034. |
[23] |
G. O. Roberts and O. Stramer,
On inference for partially observed nonlinear diffusion model using Metropolis–Hastings algorithms, Biometrika, 88 (2001), 603-621.
doi: 10.1093/biomet/88.3.603. |
[24] |
H. Sorensen,
Parametric inference for diffusion processes observed at discrete points in time: A survey, International Statistical Review, 72 (2004), 337-354.
doi: 10.1111/j.1751-5823.2004.tb00241.x. |
[25] |
O. Stramer and M. Bognar,
Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach, Bayesian Analysis, 6 (2011), 231-258.
doi: 10.1214/11-BA608. |
[26] |
A. M. Stuart,
Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.
doi: 10.1017/S0962492910000061. |
[27] |
U. Tautenhahn,
Regularization of linear ill-posed problems with noisy right hand side and noisy operator, J. Inv. Ill-Posed Problems, 16 (2008), 507-523.
doi: 10.1515/JIIP.2008.027. |
[28] |
C. R. Vogel, Computational Methods for Inverse Problems, With a foreword by H. T. Banks. Frontiers in Applied Mathematics, 23. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
doi: 10.1137/1.9780898717570. |







Parameters | Value |
Damping parameter | (stable regime): (weakly unstable regime): (strongly unstable regime): |
Force parameter | |
Volatility parameter |
Parameters | Value |
Damping parameter | (stable regime): (weakly unstable regime): (strongly unstable regime): |
Force parameter | |
Volatility parameter |
Decorrelation time | Mean | Variance | ||||
stable | 0.0287 | 0.0170 | 0.0173 | 0.0347 | 0.0706 | 0.0271 |
weakly unstable | 0.0347 | 0.0295 | 0.0173 | 0.0601 | 0.0949 | 0.0662 |
strongly unstable | 0.0049 | 0.0274 | 0.0310 | 0.0178 | 0.5762 | 0.3591 |
Decorrelation time | Mean | Variance | ||||
stable | 0.0287 | 0.0170 | 0.0173 | 0.0347 | 0.0706 | 0.0271 |
weakly unstable | 0.0347 | 0.0295 | 0.0173 | 0.0601 | 0.0949 | 0.0662 |
strongly unstable | 0.0049 | 0.0274 | 0.0310 | 0.0178 | 0.5762 | 0.3591 |
Decorrelation time | Mean | Variance | ||||
stable | 0.0108 | 0.0043 | 0.0098 | 0.0496 | 0.0916 | 0.0613 |
weakly unstable | 0.0066 | 0.0099 | 0.0151 | 0.0208 | 0.1724 | 0.0773 |
strongly unstable | 0.0090 | 0.0142 | 0.0575 | 0.0187 | 0.3866 | 0.1462 |
Decorrelation time | Mean | Variance | ||||
stable | 0.0108 | 0.0043 | 0.0098 | 0.0496 | 0.0916 | 0.0613 |
weakly unstable | 0.0066 | 0.0099 | 0.0151 | 0.0208 | 0.1724 | 0.0773 |
strongly unstable | 0.0090 | 0.0142 | 0.0575 | 0.0187 | 0.3866 | 0.1462 |
[1] |
Hedia Fgaier, Hermann J. Eberl. Parameter identification and quantitative comparison of differential equations that describe physiological adaptation of a bacterial population under iron limitation. Conference Publications, 2009, 2009 (Special) : 230-239. doi: 10.3934/proc.2009.2009.230 |
[2] |
Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428-435. doi: 10.3934/proc.2015.0428 |
[3] |
Nguyen Thi Van Anh, Bui Thi Hai Yen. Source identification problems for abstract semilinear nonlocal differential equations. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022030 |
[4] |
Ishak Alia. Time-inconsistent stochastic optimal control problems: a backward stochastic partial differential equations approach. Mathematical Control and Related Fields, 2020, 10 (4) : 785-826. doi: 10.3934/mcrf.2020020 |
[5] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems on degenerate integro-differential equations. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022025 |
[6] |
Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial and Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471 |
[7] |
Jin-Mun Jeong, Seong-Ho Cho. Identification problems of retarded differential systems in Hilbert spaces. Evolution Equations and Control Theory, 2017, 6 (1) : 77-91. doi: 10.3934/eect.2017005 |
[8] |
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025 |
[9] |
Davide Guidetti. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 749-756. doi: 10.3934/dcdss.2015.8.749 |
[10] |
Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19 |
[11] |
Tayel Dabbous. Identification for systems governed by nonlinear interval differential equations. Journal of Industrial and Management Optimization, 2012, 8 (3) : 765-780. doi: 10.3934/jimo.2012.8.765 |
[12] |
Yayun Zheng, Xu Sun. Governing equations for Probability densities of stochastic differential equations with discrete time delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3615-3628. doi: 10.3934/dcdsb.2017182 |
[13] |
Yanqing Wang, Donghui Yang, Jiongmin Yong, Zhiyong Yu. Exact controllability of linear stochastic differential equations and related problems. Mathematical Control and Related Fields, 2017, 7 (2) : 305-345. doi: 10.3934/mcrf.2017011 |
[14] |
David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135 |
[15] |
Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2719-2743. doi: 10.3934/dcdsb.2018272 |
[16] |
Farid Tari. Two-parameter families of implicit differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139 |
[17] |
Farid Tari. Two parameter families of binary differential equations. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 759-789. doi: 10.3934/dcds.2008.22.759 |
[18] |
Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467 |
[19] |
Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems and Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17 |
[20] |
Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]