The establishment of relevant model and solving an inverse random source problem are one of the main tools for analyzing mechanical properties of elastic materials. In this paper, we study an inverse random source problem for biharmonic equation in two dimension. Under some regularity assumptions on the structure of random source, the well-posedness of the forward problem is established. Moreover, based on the explicit solution of the forward problem, we can solve the corresponding inverse random source problem via two transformed integral equations. Numerical examples are presented to illustrate the validity and effectiveness of the proposed inversion method.
Citation: |
[1] |
J. E. Allen, D. E. Perea, E. R. Hemesath and L. J. Lauhon, Nonuniform nanowire doping profiles revealed by quantitative scanning photocurrent microscopy, Advanced Materials, 21 (2009), 3067-3072.
doi: 10.1002/adma.200803865.![]() ![]() |
[2] |
G. Bao, C. Chen and P. Li, Inverse random source scattering problems in several dimensions, SIAM/ASA J. Uncertainty Quantification, 4 (2016), 1263-1287.
doi: 10.1137/16M1067470.![]() ![]() ![]() |
[3] |
G. Bao, C. Chen and P. Li, Inverse random source scattering for elastic waves, SIAM J. Numer. Anal., 55 (2017), 2616-2643.
doi: 10.1137/16M1088922.![]() ![]() ![]() |
[4] |
G. Bao, S. N. Chow, P. Li and H. Zhou, An inverse random source problem for the helmholtz equation, Math. Comp., 83 (2013), 215-233.
doi: 10.1090/S0025-5718-2013-02730-5.![]() ![]() ![]() |
[5] |
G. Bao and X. Xu, An inverse random source problem in quantifying the elastic modulus of nanomaterials, Inverse Problems, 29 (2013), 015006, 16pp.
doi: 10.1088/0266-5611/29/1/015006.![]() ![]() ![]() |
[6] |
G. Bao and X. Xu, Identification of the material properties in nonuniform nanostructures, Inverse Problems, 31 (2015), 125003, 11pp.
doi: 10.1088/0266-5611/31/12/125003.![]() ![]() ![]() |
[7] |
X. Deng, V. R. Joseph, W. Mai, Z. L. Wang, F. C. Jeff Wu and P. J. Bickel, Statistical approach to quantifying the elastic deformation of nanomaterials, Proc. Natl. Acad. Sci. USA, 106 (2009), 11845-11850.
doi: 10.1073/pnas.0808758106.![]() ![]() |
[8] |
K. L Ekinci, X. M. H Huang and M. L Roukes, Ultrasensitive nanoelectromechanical mass detection, Appl. Phys. Lett., 84 (2004), 4469-4471.
doi: 10.1063/1.1755417.![]() ![]() |
[9] |
M. Hairer, An introduction to stochastic pdes, Moss, F.; Gielen, S. (ed.), Handbook of Biological Physics, 2009,517–552.
![]() |
[10] |
J. Hu, X. W. Liu and B. C. Pan, A study of the size-dependent elastic properties of zno nanowires and nanotubes, Nanotechnology, 19 (2008), 285710.
doi: 10.1088/0957-4484/19/28/285710.![]() ![]() |
[11] |
M. Li, C. Chen and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media, Inverse Problems, 34 (2018), 015003, 19pp.
doi: 10.1088/1361-6420/aa99d2.![]() ![]() ![]() |
[12] |
P. Li and G. Yuan, Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, J. Math. Anal. Appl., 450 (2017), 872-887.
doi: 10.1016/j.jmaa.2017.01.074.![]() ![]() ![]() |
[13] |
P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), 745-759.
doi: 10.3934/ipi.2017035.![]() ![]() ![]() |
[14] |
W. Mai and X. Deng, The applications of statistical quantification techniques in nanomechanics and nanoelectronics, Nanotechnology, 21 (2010), 405704.
doi: 10.1088/0957-4484/21/40/405704.![]() ![]() |
[15] |
V. Mlinar, Utilization of inverse approach in the design of materials over nano to macro scale, Annalen Der Physik, 527 (2015), 187-204.
doi: 10.1002/andp.201400190.![]() ![]() |
[16] |
S. Pereverzev and E. Schock, On the adaptive selection of the parameter in regularization of ill-posed problems, SIAM J. Numer. Anal., 43 (2005), 2060-2076.
doi: 10.1137/S0036142903433819.![]() ![]() ![]() |
[17] |
P. Poncharal, Z. Wang, D. Ugarte and W. Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science, 283 (1999), 1513-1516.
doi: 10.1126/science.283.5407.1513.![]() ![]() |
[18] |
M. Treacy, T. Ebbesen and J. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381 (1996), 678-680.
doi: 10.1038/381678a0.![]() ![]() |
[19] |
E. W. Wong, P. E. Sheehan and C. M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science, 277 (1997), 1971-1975.
doi: 10.1126/science.277.5334.1971.![]() ![]() |