
-
Previous Article
Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation
- IPI Home
- This Issue
-
Next Article
Magnetic parameters inversion method with full tensor gradient data
Total generalized variation regularization in data assimilation for Burgers' equation
1. | Research Center of Mathematical Modelling (MODEMAT), Escuela Politécnica Nacional, Quito, Ecuador |
2. | Faculty of Mathematics, Professorship Numerical Mathematics (Partial Differential Equations), Chemnitz University of Technology, Chemnitz, Germany |
We propose a second-order total generalized variation (TGV) regularization for the reconstruction of the initial condition in variational data assimilation problems. After showing the equivalence between TGV regularization and a Bayesian MAP estimator, we focus on the detailed study of the inviscid Burgers' data assimilation problem. Due to the difficult structure of the governing hyperbolic conservation law, we consider a discretize–then–optimize approach and rigorously derive a first-order optimality condition for the problem. For the numerical solution, we propose a globalized reduced Newton-type method together with a polynomial line-search strategy, and prove convergence of the algorithm to stationary points. The paper finishes with some numerical experiments where, among others, the performance of TGV–regularization compared to TV–regularization is tested.
References:
[1] |
A. Apte, D. Auroux and M. Ramaswamy, Variational data assimilation for discrete Burgers equation, Proc. Electron. J. Differential Equations, 19 (2010), 15–30. Avaliable form http://ejde.math.txstate.edu Google Scholar |
[2] |
K. Bredies, Y. Dong and M. Hintermüller,
Spatially dependent regularization parameter selection in total generalized variation models for image restoration, Int. J. Comput. Math., 90 (2013), 109-123.
doi: 10.1080/00207160.2012.700400. |
[3] |
K. Bredies, K. Kunisch and T. Pock,
Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492-526.
doi: 10.1137/090769521. |
[4] |
K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation constraints, Proc. SampTA, 201 (2011). Avaliable from: https://imsc.uni-graz.at/bredies/papers/SampTA2011.pdf Google Scholar |
[5] |
C. J. Budd, M. A. Freitag and N. K. Nichols,
Regularization techniques for ill-posed inverse problems in data assimilation, Comput. & Fluids, 46 (2011), 168-173.
doi: 10.1016/j.compfluid.2010.10.002. |
[6] |
T. F. Chan, G. H. Golub and P. Mulet,
A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.
doi: 10.1137/S1064827596299767. |
[7] |
P. G. Ciarlet, Linear and nonlinear functional analysis with applications, SIAM, 2013. |
[8] |
J. C. De los Reyes, Numerical PDE-constrained optimization, Springer, 2015.
doi: 10.1007/978-3-319-13395-9. |
[9] |
J. C. De los Reyes, C. B. Schönlieb and T. Valkonen,
Bilevel parameter learning for higher-order total variation regularisation models, J. Math. Imaging Vision, 57 (2017), 1-25.
doi: 10.1007/s10851-016-0662-8. |
[10] |
J. E. Dennis Jr. and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, SIAM, 1996.
doi: 10.1137/1.9781611971200. |
[11] |
M. A. Freitag, N. K. Nichols and C. J. Budd,
Resolution of sharp fronts in the presence of model error in variational data assimilation, Q. J. Royal Meteorol. Soc., 139 (2010), 742-757.
doi: 10.1002/qj.2002. |
[12] |
M. Hintermüller and G. Stadler,
An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006), 1-23.
doi: 10.1137/040613263. |
[13] |
M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, Springer Science & Business Media, 2008. |
[14] |
E. Kalnay, Atmospheric modeling, data assimilation, and predictability, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511802270. |
[15] |
F. Knoll, K. Bredies, T. Pock and R. Stollberger,
Second order total generalized variation (TGV) for MRI, Magn. Reson. Med., 65 (2011), 480-491.
doi: 10.1002/mrm.22595. |
[16] |
J. Lee and P. K. Kitanidis,
Bayesian inversion with total variation prior for discrete geologic structure identification, Water Resour. Res., 49 (2013), 7658-7669.
doi: 10.1002/2012WR013431. |
[17] |
J. M. Lewis, S. Lakshmivarahan and S. K. Dhall, Dynamic data assimilation : a least squares approach, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511526480. |
[18] |
J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, 2012.
doi: 10.1137/1.9781611972344. |
[19] |
S. Pfaff and S. Ulbrich,
Optimal boundary control of nonlinear hyperbolic conservation laws with switched boundary data, SIAM J. Control Optim., 53 (2015), 1250-1277.
doi: 10.1137/140995799. |
[20] |
A. Quarteroni, R. Sacco and F. Saleri, Numerical mathematics, Springer Science & Business Media, 2010. |
[21] |
C. R. Vogel, Computational Methods for Inverse Problems, SIAM, 2002.
doi: 10.1137/1.9780898717570. |
[22] |
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861. |
show all references
References:
[1] |
A. Apte, D. Auroux and M. Ramaswamy, Variational data assimilation for discrete Burgers equation, Proc. Electron. J. Differential Equations, 19 (2010), 15–30. Avaliable form http://ejde.math.txstate.edu Google Scholar |
[2] |
K. Bredies, Y. Dong and M. Hintermüller,
Spatially dependent regularization parameter selection in total generalized variation models for image restoration, Int. J. Comput. Math., 90 (2013), 109-123.
doi: 10.1080/00207160.2012.700400. |
[3] |
K. Bredies, K. Kunisch and T. Pock,
Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492-526.
doi: 10.1137/090769521. |
[4] |
K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation constraints, Proc. SampTA, 201 (2011). Avaliable from: https://imsc.uni-graz.at/bredies/papers/SampTA2011.pdf Google Scholar |
[5] |
C. J. Budd, M. A. Freitag and N. K. Nichols,
Regularization techniques for ill-posed inverse problems in data assimilation, Comput. & Fluids, 46 (2011), 168-173.
doi: 10.1016/j.compfluid.2010.10.002. |
[6] |
T. F. Chan, G. H. Golub and P. Mulet,
A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.
doi: 10.1137/S1064827596299767. |
[7] |
P. G. Ciarlet, Linear and nonlinear functional analysis with applications, SIAM, 2013. |
[8] |
J. C. De los Reyes, Numerical PDE-constrained optimization, Springer, 2015.
doi: 10.1007/978-3-319-13395-9. |
[9] |
J. C. De los Reyes, C. B. Schönlieb and T. Valkonen,
Bilevel parameter learning for higher-order total variation regularisation models, J. Math. Imaging Vision, 57 (2017), 1-25.
doi: 10.1007/s10851-016-0662-8. |
[10] |
J. E. Dennis Jr. and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, SIAM, 1996.
doi: 10.1137/1.9781611971200. |
[11] |
M. A. Freitag, N. K. Nichols and C. J. Budd,
Resolution of sharp fronts in the presence of model error in variational data assimilation, Q. J. Royal Meteorol. Soc., 139 (2010), 742-757.
doi: 10.1002/qj.2002. |
[12] |
M. Hintermüller and G. Stadler,
An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006), 1-23.
doi: 10.1137/040613263. |
[13] |
M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, Springer Science & Business Media, 2008. |
[14] |
E. Kalnay, Atmospheric modeling, data assimilation, and predictability, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511802270. |
[15] |
F. Knoll, K. Bredies, T. Pock and R. Stollberger,
Second order total generalized variation (TGV) for MRI, Magn. Reson. Med., 65 (2011), 480-491.
doi: 10.1002/mrm.22595. |
[16] |
J. Lee and P. K. Kitanidis,
Bayesian inversion with total variation prior for discrete geologic structure identification, Water Resour. Res., 49 (2013), 7658-7669.
doi: 10.1002/2012WR013431. |
[17] |
J. M. Lewis, S. Lakshmivarahan and S. K. Dhall, Dynamic data assimilation : a least squares approach, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511526480. |
[18] |
J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, 2012.
doi: 10.1137/1.9781611972344. |
[19] |
S. Pfaff and S. Ulbrich,
Optimal boundary control of nonlinear hyperbolic conservation laws with switched boundary data, SIAM J. Control Optim., 53 (2015), 1250-1277.
doi: 10.1137/140995799. |
[20] |
A. Quarteroni, R. Sacco and F. Saleri, Numerical mathematics, Springer Science & Business Media, 2010. |
[21] |
C. R. Vogel, Computational Methods for Inverse Problems, SIAM, 2002.
doi: 10.1137/1.9780898717570. |
[22] |
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli,
Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861. |








Experiment | iter | SSIM | time (s) | ||
3 | 0 | – | NaN | NaN | – |
1e-6 | 13 | 0.9594 | 35.8330 | 7.2 | |
1e-8 | 12 | 0.9594 | 35.8330 | 6.9 | |
1e-10 | 12 | 0.9594 | 35.8330 | 6.9 | |
1e-12 | 13 | 0.9594 | 35.8333 | 7.1 | |
1e-14 | 13 | 0.9594 | 35.8329 | 7.1 | |
4 | 0 | – | NaN | NaN | – |
1e-6 | 14 | 0.9592 | 39.2436 | 7.6 | |
1e-8 | 13 | 0.9592 | 39.2434 | 7.0 | |
1e-10 | 13 | 0.9592 | 39.2434 | 7.0 | |
1e-12 | 14 | 0.9591 | 39.2437 | 7.7 | |
1e-14 | 16 | 0.9591 | 39.2439 | 9.1 |
Experiment | iter | SSIM | time (s) | ||
3 | 0 | – | NaN | NaN | – |
1e-6 | 13 | 0.9594 | 35.8330 | 7.2 | |
1e-8 | 12 | 0.9594 | 35.8330 | 6.9 | |
1e-10 | 12 | 0.9594 | 35.8330 | 6.9 | |
1e-12 | 13 | 0.9594 | 35.8333 | 7.1 | |
1e-14 | 13 | 0.9594 | 35.8329 | 7.1 | |
4 | 0 | – | NaN | NaN | – |
1e-6 | 14 | 0.9592 | 39.2436 | 7.6 | |
1e-8 | 13 | 0.9592 | 39.2434 | 7.0 | |
1e-10 | 13 | 0.9592 | 39.2434 | 7.0 | |
1e-12 | 14 | 0.9591 | 39.2437 | 7.7 | |
1e-14 | 16 | 0.9591 | 39.2439 | 9.1 |
Observations | M | N | ||||||
0.1 | 0.01 | 0.001 | ||||||
iter | SSIM | iter | SSIM | iter | SSIM | |||
4 | 75 | 40 | 20 | 0.9573 | 12 | 0.9895 | 12 | 0.9985 |
9 | 50 | 20 | 19 | 0.9576 | 12 | 0.9895 | 11 | 0.9985 |
30 | 25 | 10 | 20 | 0.9581 | 14 | 0.9896 | 11 | 0.9985 |
40 | 20 | 10 | 19 | 0.9584 | 15 | 0.9896 | 12 | 0.9985 |
100 | 15 | 5 | 15 | 0.9604 | 12 | 0.9896 | 11 | 0.9985 |
150 | 10 | 5 | 20 | 0.9617 | 13 | 0.9897 | 11 | 0.9985 |
Observations | M | N | ||||||
0.1 | 0.01 | 0.001 | ||||||
iter | SSIM | iter | SSIM | iter | SSIM | |||
4 | 75 | 40 | 20 | 0.9573 | 12 | 0.9895 | 12 | 0.9985 |
9 | 50 | 20 | 19 | 0.9576 | 12 | 0.9895 | 11 | 0.9985 |
30 | 25 | 10 | 20 | 0.9581 | 14 | 0.9896 | 11 | 0.9985 |
40 | 20 | 10 | 19 | 0.9584 | 15 | 0.9896 | 12 | 0.9985 |
100 | 15 | 5 | 15 | 0.9604 | 12 | 0.9896 | 11 | 0.9985 |
150 | 10 | 5 | 20 | 0.9617 | 13 | 0.9897 | 11 | 0.9985 |
[1] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[2] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[3] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[4] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[5] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[6] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[7] |
Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047 |
[8] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284 |
[9] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[10] |
Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299 |
[11] |
Geir Evensen, Javier Amezcua, Marc Bocquet, Alberto Carrassi, Alban Farchi, Alison Fowler, Pieter L. Houtekamer, Christopher K. Jones, Rafael J. de Moraes, Manuel Pulido, Christian Sampson, Femke C. Vossepoel. An international initiative of predicting the SARS-CoV-2 pandemic using ensemble data assimilation. Foundations of Data Science, 2020 doi: 10.3934/fods.2021001 |
[12] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[13] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[14] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[15] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[16] |
Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020171 |
[17] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[18] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[19] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[20] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]