[1]
|
A. Apte, D. Auroux and M. Ramaswamy, Variational data assimilation for discrete Burgers equation, Proc. Electron. J. Differential Equations, 19 (2010), 15–30. Avaliable form http://ejde.math.txstate.edu
|
[2]
|
K. Bredies, Y. Dong and M. Hintermüller, Spatially dependent regularization parameter selection in total generalized variation models for image restoration, Int. J. Comput. Math., 90 (2013), 109-123.
doi: 10.1080/00207160.2012.700400.
|
[3]
|
K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492-526.
doi: 10.1137/090769521.
|
[4]
|
K. Bredies and T. Valkonen, Inverse problems with second-order total generalized variation constraints, Proc. SampTA, 201 (2011). Avaliable from: https://imsc.uni-graz.at/bredies/papers/SampTA2011.pdf
|
[5]
|
C. J. Budd, M. A. Freitag and N. K. Nichols, Regularization techniques for ill-posed inverse problems in data assimilation, Comput. & Fluids, 46 (2011), 168-173.
doi: 10.1016/j.compfluid.2010.10.002.
|
[6]
|
T. F. Chan, G. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration, SIAM J. Sci. Comput., 20 (1999), 1964-1977.
doi: 10.1137/S1064827596299767.
|
[7]
|
P. G. Ciarlet, Linear and nonlinear functional analysis with applications, SIAM, 2013.
|
[8]
|
J. C. De los Reyes, Numerical PDE-constrained optimization, Springer, 2015.
doi: 10.1007/978-3-319-13395-9.
|
[9]
|
J. C. De los Reyes, C. B. Schönlieb and T. Valkonen, Bilevel parameter learning for higher-order total variation regularisation models, J. Math. Imaging Vision, 57 (2017), 1-25.
doi: 10.1007/s10851-016-0662-8.
|
[10]
|
J. E. Dennis Jr. and R. B. Schnabel, Numerical methods for unconstrained optimization and nonlinear equations, SIAM, 1996.
doi: 10.1137/1.9781611971200.
|
[11]
|
M. A. Freitag, N. K. Nichols and C. J. Budd, Resolution of sharp fronts in the presence of model error in variational data assimilation, Q. J. Royal Meteorol. Soc., 139 (2010), 742-757.
doi: 10.1002/qj.2002.
|
[12]
|
M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration, SIAM J. Sci. Comput., 28 (2006), 1-23.
doi: 10.1137/040613263.
|
[13]
|
M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, Springer Science & Business Media, 2008.
|
[14]
|
E. Kalnay, Atmospheric modeling, data assimilation, and predictability, Cambridge University Press, 2003.
doi: 10.1017/CBO9780511802270.
|
[15]
|
F. Knoll, K. Bredies, T. Pock and R. Stollberger, Second order total generalized variation (TGV) for MRI, Magn. Reson. Med., 65 (2011), 480-491.
doi: 10.1002/mrm.22595.
|
[16]
|
J. Lee and P. K. Kitanidis, Bayesian inversion with total variation prior for discrete geologic structure identification, Water Resour. Res., 49 (2013), 7658-7669.
doi: 10.1002/2012WR013431.
|
[17]
|
J. M. Lewis, S. Lakshmivarahan and S. K. Dhall, Dynamic data assimilation : a least squares approach, Cambridge University Press, 2006.
doi: 10.1017/CBO9780511526480.
|
[18]
|
J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, SIAM, 2012.
doi: 10.1137/1.9781611972344.
|
[19]
|
S. Pfaff and S. Ulbrich, Optimal boundary control of nonlinear hyperbolic conservation laws with switched boundary data, SIAM J. Control Optim., 53 (2015), 1250-1277.
doi: 10.1137/140995799.
|
[20]
|
A. Quarteroni, R. Sacco and F. Saleri, Numerical mathematics, Springer Science & Business Media, 2010.
|
[21]
|
C. R. Vogel, Computational Methods for Inverse Problems, SIAM, 2002.
doi: 10.1137/1.9780898717570.
|
[22]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|