[1]
|
V. Barnett, Comparative Statistical Inference, Second edition. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester, 1982.
|
[2]
|
D. Blacknell, Comparison of parameter estimators for K-distribution, IEE Proceedings-Radar, Sonar and Navigation, 141 (1994), 45-52.
doi: 10.1049/ip-rsn:19949885.
|
[3]
|
G. Casella and R. Berger, Statistical Inference, Duxbury advanced series in statistics and decision sciences, Duxbury Pacific Grove, CA, United States of America, 2002.
|
[4]
|
R. Cintra, L. Rêgo, G. Cordeiro and A. Nascimento, Beta generalized normal distribution with an application for SAR image processing, Statistics, 48 (2014), 279-294.
doi: 10.1080/02331888.2012.748776.
|
[5]
|
L. Cobb, Stochastic catastrophe models and multimodal distributions, Behavioral Science, 23 (1978), 360-374.
doi: 10.1002/bs.3830230407.
|
[6]
|
G. M. Cordeiro and A. J. Lemonte, The McDonald inverted beta distribution, Journal of the Franklin Institute, 349 (2012), 1174-1197.
doi: 10.1016/j.jfranklin.2012.01.006.
|
[7]
|
G. M. Cordeiro, E. M. Ortega and S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute, 347 (2010), 1399-1429.
doi: 10.1016/j.jfranklin.2010.06.010.
|
[8]
|
B. Efron, Bootstrap methods: Another look at the jackknife, Annals of Statistics, 7 (1979), 1–26, URL https://projecteuclid.org/euclid.aos/1176344552.
doi: 10.1214/aos/1176344552.
|
[9]
|
A. El-Zaart and D. Ziou, Statistical modelling of multimodal SAR images, Int. J. Remote Sens., 28 (2007), 2277-2294.
doi: 10.1080/01431160600933997.
|
[10]
|
B. S. Everitt and D. J. Hand, Finite Mixture Distributions, Chapman and Hall, London, 1981.
|
[11]
|
T. L. Fine, Probability and Probabilistic Reasoning for Electrical Engineering, Prentice Hall, 2006.
|
[12]
|
A. C. Frery, A. D. C. Nascimento and R. J. Cintra, Analytic expressions for stochastic distances between relaxed complex Wishart distributions, IEEE Transactions on Geoscience and Remote Sensing, 52 (2014), 1213-1226.
doi: 10.1109/TGRS.2013.2248737.
|
[13]
|
A. Golubev, Exponentially modified Gaussian (emg) relevance to distributions related to cell proliferation and differentiation, Journal of Theoretical Biology, 262 (2010), 257-266.
doi: 10.1016/j.jtbi.2009.10.005.
|
[14]
|
E. Grushka, Characterization of exponentially modified Gaussian peaks in chromatography, Analytical Chemistry, 44 (1972), 1733-1738.
doi: 10.1021/ac60319a011.
|
[15]
|
D. Karlis and E. Xekalaki, Mixed Poisson distributions, International Statistical Review, 73 (2005), 35-58.
doi: 10.1111/j.1751-5823.2005.tb00250.x.
|
[16]
|
M. C. S. Lima, G. M. Cordeiro, A. D. C. Nascimento and K. F. Silva, A new model for describing remission times: The generalized beta-generated Lindley distribution, Anais da Academia Brasileira de Ciências, 89 (2017), 1343–1367, URL http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652017000401343&nrm=iso.
doi: 10.1590/0001-3765201720160455.
|
[17]
|
K. V. Muller, SAR correlation imaging and anisotropic scattering, Inverse Problems and Imaging, 12 (2018), 697-731.
doi: 10.3934/ipi.2018030.
|
[18]
|
M. M. Najafabadi, T. M. Khoshgoftaar, F. Villanustre and J. Holt, Large-scale distributed l-bfgs, Journal of Big Data, 4 (2017), 22.
doi: 10.1186/s40537-017-0084-5.
|
[19]
|
A. K. Nandi and D. Mämpel, An extension of the generalized Gaussian distribution to include asymmetry, Journal of the Franklin Institute, 332 (1995), 67-75.
doi: 10.1016/0016-0032(95)00029-W.
|
[20]
|
A. D. C. Nascimento, R. J. Cintra and A. C. Frery, Hypothesis testing in speckled data with stochastic distances, IEEE Transactions on Geoscience and Remote Sensing, 48 (2010), 373-385.
doi: 10.1109/TGRS.2009.2025498.
|
[21]
|
N. B. Norman and L. Johnson Samuel Kotz, Continuous Univariate Distributions, Wiley Series in Probability and Statistics, Wiley-Interscience, 1995.
|
[22]
|
H. H. Panjer, Recursive evaluation of a family of compound distributions, Astin Bulletin, 12 (1981), 22-26.
doi: 10.1017/S0515036100006796.
|
[23]
|
D. Povey, L. Burget, M. Agarwal, P. Akyazi, F. Kai, A. Ghoshal, O. Glembek, N. Goel, M. Karafiát, A. Rastrow, R. C. Rose, P. Schwarz and S. Thomas, The subspace Gaussian mixture model–a structured model for speech recognition, Computer Speech & Language, 25 (2011), 404–439, URL http://www.sciencedirect.com/science/article/pii/S088523081000063X, Language and speech issues in the engineering of companionable dialogue systems.
doi: 10.1016/j.csl.2010.06.003.
|
[24]
|
S. I. Resnick, Adventures in Stochastic Processes, Birkhauser, Boston, 1992.
|
[25]
|
K. Revfeim, An initial model of the relationship between rainfall events and daily rainfalls, Journal of Hydrology, 75 (1984), 357-364.
doi: 10.1016/0022-1694(84)90059-3.
|
[26]
|
M. C. Teich and P. Diament, Multiply stochastic representations for K distributions and their Poisson transforms, Journal of the Optical Society of America A, 6 (1989), 80-91.
doi: 10.1364/JOSAA.6.000080.
|
[27]
|
C. Thompson, Homogeneity analysis of rainfall series: An application of the use of a realistic rainfall model, Journal of Climatology, 4 (1984), 609-619.
|
[28]
|
T. S. Wirjanto and D. Xu, The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey, Technical report, Working paper, 2009.
|