• Previous Article
    Identifiability of diffusion coefficients for source terms of non-uniform sign
  • IPI Home
  • This Issue
  • Next Article
    On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena
October  2019, 13(5): 983-1006. doi: 10.3934/ipi.2019044

On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions

Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, KS 67260-0033, USA

Received  September 2018 Revised  May 2019 Published  July 2019

Fund Project: The author is supported by NSF grant 15-14886 and the Emylou Keith and Betty Dutcher Distinguished Professorship.

We derive bounds of solutions of the Cauchy problem for general elliptic partial differential equations of second order containing parameter (wave number) $ k $ which are getting nearly Lipschitz for large $ k $. Proofs use energy estimates combined with splitting solutions into low and high frequencies parts, an associated hyperbolic equation and the Fourier-Bros-Iagolnitzer transform to replace the hyperbolic equation with an elliptic equation without parameter $ k $. The results suggest a better resolution in prospecting by various (acoustic, electromagnetic, etc) stationary waves with higher wave numbers without any geometric assumptions on domains and observation sites.

Citation: Victor Isakov. On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions. Inverse Problems & Imaging, 2019, 13 (5) : 983-1006. doi: 10.3934/ipi.2019044
References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability in the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004.  Google Scholar

[2]

D. Aralumallige Subbarayappa and V. Isakov, On increased stability in the continuation for the Helmholtz equation, Inverse Problems, 23 (2007), 1689-1697.  doi: 10.1088/0266-5611/23/4/019.  Google Scholar

[3]

D. Aralumallige Subbarayappa and V. Isakov, Increasing stability of the continuation for the Maxwell system, Inverse Problems, 26 (2010), 074005, 14pp. doi: 10.1088/0266-5611/26/7/074005.  Google Scholar

[4]

R. BosiY. Kurylev and M. Lassas, Stability of the unique continuation for the wave operator via Tataru's inequality and applications, J. Diff. Equat., 260 (2016), 6451-6492.  doi: 10.1016/j.jde.2015.12.043.  Google Scholar

[5]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problems with many frequencies, J. Diff. Equat., 260 (2016), 4786-4804.  doi: 10.1016/j.jde.2015.11.030.  Google Scholar

[6]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, in Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. XIV (Paris, 1997/1998), North-Holland, Elsevier Science, 31 (2002), 329–349. doi: 10.1016/S0168-2024(02)80016-9.  Google Scholar

[7]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 20 (2004), 697-712.  doi: 10.1088/0266-5611/20/3/004.  Google Scholar

[8]

V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., AMS, 426 (2007), 255-267.  doi: 10.1090/conm/426/08192.  Google Scholar

[9]

V. Isakov, Increased stability in the Cauchy problem for some elliptic equations, in Instability in Models Connected with Fluid Flow (eds. C. Bardos, A. Fursikov), Intern. Math. Series, Springer-Verlag, 6 (2008), 339–362. doi: 10.1007/978-0-387-75217-4_8.  Google Scholar

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map, Discr. Cont. Dyn. Syst. S, 4 (2011), 631-640.  doi: 10.3934/dcdss.2011.4.631.  Google Scholar

[11]

V. Isakov, Increasing stability of the continuation for general elliptic equations of second order, in New Prospects in Direct, Inverse, and Control Problems for Evolution Equations, Springer INdAM Series 10 (2014), 203–218. doi: 10.1007/978-3-319-11406-4_10.  Google Scholar

[12]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-51658-5.  Google Scholar

[13]

V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. of Anal., 18 (2011), 1-29.  doi: 10.4310/MAA.2011.v18.n1.a1.  Google Scholar

[14]

V. Isakov and S. Lu, Inverse source problems without (pseudo)convexity assumptions, Inv. Probl. Imag., 12 (2018), 955-970.  doi: 10.3934/ipi.2018040.  Google Scholar

[15]

V. Isakov and S. Lu, Increasing stability in the inverse source problems with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18.  doi: 10.1137/17M1112704.  Google Scholar

[16]

V. IsakovR.-Y. Lai and J.-N. Wang, Increasing stability for the conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594.  doi: 10.1137/15M1019052.  Google Scholar

[17]

V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map, Inv. Probl. Imag., 8 (2014), 1139-1150.  doi: 10.3934/ipi.2014.8.1139.  Google Scholar

[18]

F. John, Continuous Dependence on Data for Solutions of Partial Differential Equations With a Prescribed Bound, Comm. Pure Appl. Math., 13 (1960), 551-585.  doi: 10.1002/cpa.3160130402.  Google Scholar

[19]

L. Robbiano, Theoreme d'unicite adapte au controle des solutions des problemes hyperboliques, Comm. Part. Diff. Equat., 16 (1991), 789-800.  doi: 10.1080/03605309108820778.  Google Scholar

[20]

L. Robbiano, Fonction de cout et controle des solutions des equations hyperboliques, Asympt. Anal., 10 (1995), 95-115.   Google Scholar

[21]

L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-529.  doi: 10.1007/s002220050212.  Google Scholar

[22]

D. Tataru, Unique continuation for solutions to PDE: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884.  doi: 10.1080/03605309508821117.  Google Scholar

[23]

S. Vessella, Stability estimates for an inverse hyperbolic initial boundary value problem with unknown boundaries, SIAM J. Math. Anal., 47 (2016), 1419-1457.  doi: 10.1137/140976212.  Google Scholar

[24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.   Google Scholar

show all references

References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability in the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004.  Google Scholar

[2]

D. Aralumallige Subbarayappa and V. Isakov, On increased stability in the continuation for the Helmholtz equation, Inverse Problems, 23 (2007), 1689-1697.  doi: 10.1088/0266-5611/23/4/019.  Google Scholar

[3]

D. Aralumallige Subbarayappa and V. Isakov, Increasing stability of the continuation for the Maxwell system, Inverse Problems, 26 (2010), 074005, 14pp. doi: 10.1088/0266-5611/26/7/074005.  Google Scholar

[4]

R. BosiY. Kurylev and M. Lassas, Stability of the unique continuation for the wave operator via Tataru's inequality and applications, J. Diff. Equat., 260 (2016), 6451-6492.  doi: 10.1016/j.jde.2015.12.043.  Google Scholar

[5]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problems with many frequencies, J. Diff. Equat., 260 (2016), 4786-4804.  doi: 10.1016/j.jde.2015.11.030.  Google Scholar

[6]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, in Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. XIV (Paris, 1997/1998), North-Holland, Elsevier Science, 31 (2002), 329–349. doi: 10.1016/S0168-2024(02)80016-9.  Google Scholar

[7]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 20 (2004), 697-712.  doi: 10.1088/0266-5611/20/3/004.  Google Scholar

[8]

V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., AMS, 426 (2007), 255-267.  doi: 10.1090/conm/426/08192.  Google Scholar

[9]

V. Isakov, Increased stability in the Cauchy problem for some elliptic equations, in Instability in Models Connected with Fluid Flow (eds. C. Bardos, A. Fursikov), Intern. Math. Series, Springer-Verlag, 6 (2008), 339–362. doi: 10.1007/978-0-387-75217-4_8.  Google Scholar

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map, Discr. Cont. Dyn. Syst. S, 4 (2011), 631-640.  doi: 10.3934/dcdss.2011.4.631.  Google Scholar

[11]

V. Isakov, Increasing stability of the continuation for general elliptic equations of second order, in New Prospects in Direct, Inverse, and Control Problems for Evolution Equations, Springer INdAM Series 10 (2014), 203–218. doi: 10.1007/978-3-319-11406-4_10.  Google Scholar

[12]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-51658-5.  Google Scholar

[13]

V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. of Anal., 18 (2011), 1-29.  doi: 10.4310/MAA.2011.v18.n1.a1.  Google Scholar

[14]

V. Isakov and S. Lu, Inverse source problems without (pseudo)convexity assumptions, Inv. Probl. Imag., 12 (2018), 955-970.  doi: 10.3934/ipi.2018040.  Google Scholar

[15]

V. Isakov and S. Lu, Increasing stability in the inverse source problems with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18.  doi: 10.1137/17M1112704.  Google Scholar

[16]

V. IsakovR.-Y. Lai and J.-N. Wang, Increasing stability for the conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594.  doi: 10.1137/15M1019052.  Google Scholar

[17]

V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map, Inv. Probl. Imag., 8 (2014), 1139-1150.  doi: 10.3934/ipi.2014.8.1139.  Google Scholar

[18]

F. John, Continuous Dependence on Data for Solutions of Partial Differential Equations With a Prescribed Bound, Comm. Pure Appl. Math., 13 (1960), 551-585.  doi: 10.1002/cpa.3160130402.  Google Scholar

[19]

L. Robbiano, Theoreme d'unicite adapte au controle des solutions des problemes hyperboliques, Comm. Part. Diff. Equat., 16 (1991), 789-800.  doi: 10.1080/03605309108820778.  Google Scholar

[20]

L. Robbiano, Fonction de cout et controle des solutions des equations hyperboliques, Asympt. Anal., 10 (1995), 95-115.   Google Scholar

[21]

L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-529.  doi: 10.1007/s002220050212.  Google Scholar

[22]

D. Tataru, Unique continuation for solutions to PDE: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884.  doi: 10.1080/03605309508821117.  Google Scholar

[23]

S. Vessella, Stability estimates for an inverse hyperbolic initial boundary value problem with unknown boundaries, SIAM J. Math. Anal., 47 (2016), 1419-1457.  doi: 10.1137/140976212.  Google Scholar

[24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944.   Google Scholar
[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[3]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[4]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[5]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[6]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[12]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[13]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[18]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[19]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[20]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (108)
  • HTML views (223)
  • Cited by (4)

Other articles
by authors

[Back to Top]