• Previous Article
    Identifiability of diffusion coefficients for source terms of non-uniform sign
  • IPI Home
  • This Issue
  • Next Article
    On finding a buried obstacle in a layered medium via the time domain enclosure method in the case of possible total reflection phenomena
October  2019, 13(5): 983-1006. doi: 10.3934/ipi.2019044

On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions

Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, KS 67260-0033, USA

Received  September 2018 Revised  May 2019 Published  July 2019

Fund Project: The author is supported by NSF grant 15-14886 and the Emylou Keith and Betty Dutcher Distinguished Professorship

We derive bounds of solutions of the Cauchy problem for general elliptic partial differential equations of second order containing parameter (wave number) $ k $ which are getting nearly Lipschitz for large $ k $. Proofs use energy estimates combined with splitting solutions into low and high frequencies parts, an associated hyperbolic equation and the Fourier-Bros-Iagolnitzer transform to replace the hyperbolic equation with an elliptic equation without parameter $ k $. The results suggest a better resolution in prospecting by various (acoustic, electromagnetic, etc) stationary waves with higher wave numbers without any geometric assumptions on domains and observation sites.

Citation: Victor Isakov. On increasing stability of the continuation for elliptic equations of second order without (pseudo)convexity assumptions. Inverse Problems & Imaging, 2019, 13 (5) : 983-1006. doi: 10.3934/ipi.2019044
References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability in the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004. Google Scholar

[2]

D. Aralumallige Subbarayappa and V. Isakov, On increased stability in the continuation for the Helmholtz equation, Inverse Problems, 23 (2007), 1689-1697. doi: 10.1088/0266-5611/23/4/019. Google Scholar

[3]

D. Aralumallige Subbarayappa and V. Isakov, Increasing stability of the continuation for the Maxwell system, Inverse Problems, 26 (2010), 074005, 14pp. doi: 10.1088/0266-5611/26/7/074005. Google Scholar

[4]

R. BosiY. Kurylev and M. Lassas, Stability of the unique continuation for the wave operator via Tataru's inequality and applications, J. Diff. Equat., 260 (2016), 6451-6492. doi: 10.1016/j.jde.2015.12.043. Google Scholar

[5]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problems with many frequencies, J. Diff. Equat., 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030. Google Scholar

[6]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, in Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. XIV (Paris, 1997/1998), North-Holland, Elsevier Science, 31 (2002), 329–349. doi: 10.1016/S0168-2024(02)80016-9. Google Scholar

[7]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 20 (2004), 697-712. doi: 10.1088/0266-5611/20/3/004. Google Scholar

[8]

V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., AMS, 426 (2007), 255-267. doi: 10.1090/conm/426/08192. Google Scholar

[9]

V. Isakov, Increased stability in the Cauchy problem for some elliptic equations, in Instability in Models Connected with Fluid Flow (eds. C. Bardos, A. Fursikov), Intern. Math. Series, Springer-Verlag, 6 (2008), 339–362. doi: 10.1007/978-0-387-75217-4_8. Google Scholar

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map, Discr. Cont. Dyn. Syst. S, 4 (2011), 631-640. doi: 10.3934/dcdss.2011.4.631. Google Scholar

[11]

V. Isakov, Increasing stability of the continuation for general elliptic equations of second order, in New Prospects in Direct, Inverse, and Control Problems for Evolution Equations, Springer INdAM Series 10 (2014), 203–218. doi: 10.1007/978-3-319-11406-4_10. Google Scholar

[12]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-51658-5. Google Scholar

[13]

V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. of Anal., 18 (2011), 1-29. doi: 10.4310/MAA.2011.v18.n1.a1. Google Scholar

[14]

V. Isakov and S. Lu, Inverse source problems without (pseudo)convexity assumptions, Inv. Probl. Imag., 12 (2018), 955-970. doi: 10.3934/ipi.2018040. Google Scholar

[15]

V. Isakov and S. Lu, Increasing stability in the inverse source problems with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18. doi: 10.1137/17M1112704. Google Scholar

[16]

V. IsakovR.-Y. Lai and J.-N. Wang, Increasing stability for the conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594. doi: 10.1137/15M1019052. Google Scholar

[17]

V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map, Inv. Probl. Imag., 8 (2014), 1139-1150. doi: 10.3934/ipi.2014.8.1139. Google Scholar

[18]

F. John, Continuous Dependence on Data for Solutions of Partial Differential Equations With a Prescribed Bound, Comm. Pure Appl. Math., 13 (1960), 551-585. doi: 10.1002/cpa.3160130402. Google Scholar

[19]

L. Robbiano, Theoreme d'unicite adapte au controle des solutions des problemes hyperboliques, Comm. Part. Diff. Equat., 16 (1991), 789-800. doi: 10.1080/03605309108820778. Google Scholar

[20]

L. Robbiano, Fonction de cout et controle des solutions des equations hyperboliques, Asympt. Anal., 10 (1995), 95-115. Google Scholar

[21]

L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-529. doi: 10.1007/s002220050212. Google Scholar

[22]

D. Tataru, Unique continuation for solutions to PDE: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884. doi: 10.1080/03605309508821117. Google Scholar

[23]

S. Vessella, Stability estimates for an inverse hyperbolic initial boundary value problem with unknown boundaries, SIAM J. Math. Anal., 47 (2016), 1419-1457. doi: 10.1137/140976212. Google Scholar

[24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. Google Scholar

show all references

References:
[1]

G. Alessandrini, L. Rondi, E. Rosset and S. Vessella, The stability in the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004, 47pp. doi: 10.1088/0266-5611/25/12/123004. Google Scholar

[2]

D. Aralumallige Subbarayappa and V. Isakov, On increased stability in the continuation for the Helmholtz equation, Inverse Problems, 23 (2007), 1689-1697. doi: 10.1088/0266-5611/23/4/019. Google Scholar

[3]

D. Aralumallige Subbarayappa and V. Isakov, Increasing stability of the continuation for the Maxwell system, Inverse Problems, 26 (2010), 074005, 14pp. doi: 10.1088/0266-5611/26/7/074005. Google Scholar

[4]

R. BosiY. Kurylev and M. Lassas, Stability of the unique continuation for the wave operator via Tataru's inequality and applications, J. Diff. Equat., 260 (2016), 6451-6492. doi: 10.1016/j.jde.2015.12.043. Google Scholar

[5]

J. ChengV. Isakov and S. Lu, Increasing stability in the inverse source problems with many frequencies, J. Diff. Equat., 260 (2016), 4786-4804. doi: 10.1016/j.jde.2015.11.030. Google Scholar

[6]

M. Eller, V. Isakov, G. Nakamura and D. Tataru, Uniqueness and Stability in the Cauchy Problem for Maxwell' and elasticity systems, in Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. XIV (Paris, 1997/1998), North-Holland, Elsevier Science, 31 (2002), 329–349. doi: 10.1016/S0168-2024(02)80016-9. Google Scholar

[7]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 20 (2004), 697-712. doi: 10.1088/0266-5611/20/3/004. Google Scholar

[8]

V. Isakov, Increased stability in the continuation for the Helmholtz equation with variable coefficient, Contemp. Math., AMS, 426 (2007), 255-267. doi: 10.1090/conm/426/08192. Google Scholar

[9]

V. Isakov, Increased stability in the Cauchy problem for some elliptic equations, in Instability in Models Connected with Fluid Flow (eds. C. Bardos, A. Fursikov), Intern. Math. Series, Springer-Verlag, 6 (2008), 339–362. doi: 10.1007/978-0-387-75217-4_8. Google Scholar

[10]

V. Isakov, Increasing stability for the Schrödinger potential from the Dirichlet-to-Neumann map, Discr. Cont. Dyn. Syst. S, 4 (2011), 631-640. doi: 10.3934/dcdss.2011.4.631. Google Scholar

[11]

V. Isakov, Increasing stability of the continuation for general elliptic equations of second order, in New Prospects in Direct, Inverse, and Control Problems for Evolution Equations, Springer INdAM Series 10 (2014), 203–218. doi: 10.1007/978-3-319-11406-4_10. Google Scholar

[12]

V. Isakov, Inverse Problems for Partial Differential Equations, Springer-Verlag, New York, 2017. doi: 10.1007/978-3-319-51658-5. Google Scholar

[13]

V. Isakov and S. Kindermann, Regions of stability in the Cauchy problem for the Helmholtz equation, Methods Appl. of Anal., 18 (2011), 1-29. doi: 10.4310/MAA.2011.v18.n1.a1. Google Scholar

[14]

V. Isakov and S. Lu, Inverse source problems without (pseudo)convexity assumptions, Inv. Probl. Imag., 12 (2018), 955-970. doi: 10.3934/ipi.2018040. Google Scholar

[15]

V. Isakov and S. Lu, Increasing stability in the inverse source problems with attenuation and many frequencies, SIAM J. Appl. Math., 78 (2018), 1-18. doi: 10.1137/17M1112704. Google Scholar

[16]

V. IsakovR.-Y. Lai and J.-N. Wang, Increasing stability for the conductivity and attenuation coefficients, SIAM J. Math. Anal., 48 (2016), 569-594. doi: 10.1137/15M1019052. Google Scholar

[17]

V. Isakov and J.-N. Wang, Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to Neumann map, Inv. Probl. Imag., 8 (2014), 1139-1150. doi: 10.3934/ipi.2014.8.1139. Google Scholar

[18]

F. John, Continuous Dependence on Data for Solutions of Partial Differential Equations With a Prescribed Bound, Comm. Pure Appl. Math., 13 (1960), 551-585. doi: 10.1002/cpa.3160130402. Google Scholar

[19]

L. Robbiano, Theoreme d'unicite adapte au controle des solutions des problemes hyperboliques, Comm. Part. Diff. Equat., 16 (1991), 789-800. doi: 10.1080/03605309108820778. Google Scholar

[20]

L. Robbiano, Fonction de cout et controle des solutions des equations hyperboliques, Asympt. Anal., 10 (1995), 95-115. Google Scholar

[21]

L. Robbiano and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math., 131 (1998), 493-529. doi: 10.1007/s002220050212. Google Scholar

[22]

D. Tataru, Unique continuation for solutions to PDE: Between Hörmander's Theorem and Holmgren's Theorem, Comm. Part. Diff. Equat., 20 (1995), 855-884. doi: 10.1080/03605309508821117. Google Scholar

[23]

S. Vessella, Stability estimates for an inverse hyperbolic initial boundary value problem with unknown boundaries, SIAM J. Math. Anal., 47 (2016), 1419-1457. doi: 10.1137/140976212. Google Scholar

[24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. Google Scholar
[1]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[2]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[3]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[4]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[5]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[6]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[7]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[8]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[9]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[10]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems & Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[11]

Abderrahmane Habbal, Moez Kallel, Marwa Ouni. Nash strategies for the inverse inclusion Cauchy-Stokes problem. Inverse Problems & Imaging, 2019, 13 (4) : 827-862. doi: 10.3934/ipi.2019038

[12]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[13]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[14]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

[15]

Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks & Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337

[16]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[17]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[18]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[19]

Yongsheng Mi, Chunlai Mu, Pan Zheng. On the Cauchy problem of the modified Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2047-2072. doi: 10.3934/dcdss.2016084

[20]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (55)
  • HTML views (170)
  • Cited by (0)

Other articles
by authors

[Back to Top]