The problem of recovering a diffusion coefficient $ a $ in a second-order elliptic partial differential equation from a corresponding solution $ u $ for a given right-hand side $ f $ is considered, with particular focus on the case where $ f $ is allowed to take both positive and negative values. Identifiability of $ a $ from $ u $ is shown under mild smoothness requirements on $ a $, $ f $, and on the spatial domain $ D $, assuming that either the gradient of $ u $ is nonzero almost everywhere, or that $ f $ as a distribution does not vanish on any open subset of $ D $. Further results of this type under essentially minimal regularity conditions are obtained for the case of $ D $ being an interval, including detailed information on the continuity properties of the mapping from $ u $ to $ a $.
Citation: |
[1] | G. Alessandrini, On the identification of the leading coefficient of an elliptic equation, Boll. Un. Mat. Ital. C (6), 4 (1985), 87-111. |
[2] | G. Alessandrini, An identification problem for an elliptic equation in two variables, Ann. Mat. Pura Appl. (4), 145 (1986), 265-295. doi: 10.1007/BF01790543. |
[3] | A. Bonito, A. Cohen, R. DeVore, G. Petrova and G. Welper, Diffusion coefficients estimation for elliptic partial differential equations, SIAM J. Math. Anal., 49 (2017), 1570-1592. doi: 10.1137/16M1094476. |
[4] | G. Chavent and K. Kunisch, The output least squares identifiability of the diffusion coefficient from an $H^1$-observation in a 2-D elliptic equation, A tribute to J. L. Lions, ESAIM Control Optim. Calc. Var., 8 (2002), 423-440. doi: 10.1051/cocv:2002028. |
[5] | G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Rational Mech. Anal., 147 (1999), 89-118. doi: 10.1007/s002050050146. |
[6] | G.-Q. Chen, M. Torres and W. P. Ziemer, Gauss-Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Communications on Pure and Applied Mathematics, 62 (2009), 242-304. doi: 10.1002/cpa.20262. |
[7] | C. Chicone and J. Gerlach, A note on the identifiability of distributed parameters in elliptic equations, SIAM J. Math. Anal., 18 (1987), 1378-1384. doi: 10.1137/0518099. |
[8] | R. S. Falk, Error estimates for the numerical identification of a variable coefficient, Math. Comp., 40 (1983), 537-546. doi: 10.1090/S0025-5718-1983-0689469-3. |
[9] | D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin-New York, 1977. |
[10] | N. Honda, J. McLaughlin and G. Nakamura, Conditional stability for a single interior measurement, Inverse Problems, 30 (2014), 055001l, 19pp. doi: 10.1088/0266-5611/30/5/055001. |
[11] | K. Ito and K. Kunisch, On the injectivity and linearization of the coefficient-to-solution mapping for elliptic boundary value problems, J. Math. Anal. Appl., 188 (1994), 1040-1066. doi: 10.1006/jmaa.1994.1479. |
[12] | R. V. Kohn and B. D. Lowe, A variational method for parameter identification, RAIRO Modél. Math. Anal. Numér., 22 (1988), 119-158. doi: 10.1051/m2an/1988220101191. |
[13] | K. Kunisch, Inherent identifiability of parameters in elliptic differential equations, J. Math. Anal. Appl., 132 (1988), 453-472. doi: 10.1016/0022-247X(88)90074-1. |
[14] | K. Kunisch and L. W. White, Identifiability under approximation for an elliptic boundary value problem, SIAM J. Control Optim., 25 (1987), 279-297. doi: 10.1137/0325017. |
[15] | F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory, Cambridge University Press, 2012. doi: 10.1017/CBO9781139108133. |
[16] | P. Marcellini, Identificazione di un coefficiente in una equazione differenziale ordinaria del secondo ordine, Ricerche Mat, 31 (1982), 223-243. |
[17] | G. R. Richter, An inverse problem for the steady state diffusion equation, SIAM J. Appl. Math., 41 (1981), 210-221. doi: 10.1137/0141016. |
[18] | G. R. Richter, Numerical identification of a spatially varying diffusion coefficient, Math. Comp., 36 (1981), 375-386. doi: 10.1090/S0025-5718-1981-0606502-3. |
[19] | V. Volterra, Sui Principii del Calcolo Integrale, Giornale di Matematiche, 1881. |