\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Integral equations for biharmonic data completion

Abstract / Introduction Full Text(HTML) Figure(1) / Table(2) Related Papers Cited by
  • A boundary integral based method for the stable reconstruction of missing boundary data is presented for the biharmonic equation. The solution (displacement) is known throughout the boundary of an annular domain whilst the normal derivative and bending moment are specified only on the outer boundary curve. A recent iterative method is applied for the data completion solving mixed problems throughout the iterations. The solution to each mixed problem is represented as a biharmonic single-layer potential. Matching against the given boundary data, a system of boundary integrals is obtained to be solved for densities over the boundary. This system is discretised using the Nyström method. A direct approach is also given representing the solution of the ill-posed problem as a biharmonic single-layer potential and applying the similar techniques as for the mixed problems. Tikhonov regularization is employed for the solution of the corresponding discretised system. Numerical results are presented for several annular domains showing the efficiency of both data completion approaches.

    Mathematics Subject Classification: Primary: 35R25, 31B30, 65R20; Secondary: 74K20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Errors as a function of the number of iteration steps when reconstructing $ Nu $ and $ Mu $ on the inner boundary $ \Gamma_1 $ in Ex. 2

    Table 1.  The relative $ L_2 $ error for $ Mu $ on $ \Gamma_2 $ with $ u $ solving $ \rm(4) $$ \rm(5) $, and for $ Mv $ on $ \Gamma_1 $ with $ v $ solving $ \rm(11) $$ \rm(12) $, for the source point $ z_1 = (3, \, 0) $ and the setup of Ex 1

    $ m $ $ e_{2M}(\Gamma_2) $ $ \tilde{e}_{2M}(\Gamma_1) $
    8 $ 0.012728889 $ $ 0.0080868877 $
    16 $ 0.000480837 $ $ 0.0000485082 $
    32 $ 0.000000700 $ $ 0.0000000002 $
    64 $ 0.0 $ $ 0.0 $
     | Show Table
    DownLoad: CSV

    Table 2.  The errors in the second example calculated on $ \Gamma_1 $ for the "direct" single-layer approach with exact ($ \delta = 0\% $) and noisy data ($ \delta = 3\% $)

    $ \delta = 0\% $ $ \delta = 3\% $
    $ m $ $ \alpha $ $ e_{2M} $ $ e_{2N} $ $ \alpha $ $ e_{2M} $ $ e_{2N} $
    8 1E$ - $05 4.0752E$ - $02 4.7541E$ - $03 1E$ - $02 $ 0.23812 $ 0.02612
    16 1E$ - $07 8.1073E$ - $03 2.5088E$ - $04 1E$ - $02 $ 0.23534 $ 0.02959
    32 1E$ - $10 3.4936E$ - $05 9.9830E$ - $07 1E$ - $03 $ 0.23824 $ 0.03871
    64 1E$ - $10 3.4553E$ - $05 9.8739E$ - $07 1E$ - $02 $ 0.23239 $ 0.02678
     | Show Table
    DownLoad: CSV
  • [1] G. AlessandriniE. Rosset and S. Vessella, Optimal three spheres inequality at the boundary for the Kirchhoff-Love plate's equation with Dirichlet conditions, Arch. Ration. Mech. Anal., 231 (2019), 1455-1486.  doi: 10.1007/s00205-018-1302-9.
    [2] A. Beshley, R. Chapko and B. T. Johansson, A boundary-domain integral equation method for an elliptic Cauchy problem with variable coefficients, in Analysis, Probability, Applications, and Computation, Eds. K. Lindahl, T. Lindström, L. G. Rodino, J. Toft, P. Wahlberg, Birkhäuser, 2019,493–501. doi: 10.1007/978-3-030-04459-6_47.
    [3] I. BorachokR. Chapko and B. T. Johansson, Numerical solution of an elliptic 3-dimensional Cauchy problem by the alternating method and boundary integral equations, J. Inverse Ill-Posed Probl., 24 (2016), 711-725.  doi: 10.1515/jiip-2015-0053.
    [4] Y. Boukari and H. Haddar, A convergent data completion algorithm using surface integral equations, Inverse Problems, 31 (2015), 035011, 21pp. doi: 10.1088/0266-5611/31/3/035011.
    [5] F. CakoniG. C. Hsiao and W. L. Wendland, On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation, Complex Var. Theory Appl., 50 (2005), 681-696.  doi: 10.1080/02781070500087394.
    [6] F. Cakoni and R. Kress, Integral equations for inverse problems in corrosion detection from partial Cauchy data, Inverse Probl. Imaging, 1 (2007), 229-245.  doi: 10.3934/ipi.2007.1.229.
    [7] R. Chapko and B. T. Johansson, On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach, Inverse Probl. Imaging, 6 (2012), 25-38.  doi: 10.3934/ipi.2012.6.25.
    [8] R. Chapko and B. T. Johansson, Boundary-integral approach for the numerical solution of the Cauchy problem for the Laplace equation, Ukr. Mat. Zh., 68 (2016), 1665-1682.  doi: 10.1007/s11253-017-1339-1.
    [9] R. Chapko and B. T. Johansson, A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems, Appl. Numer. Math., 129 (2018), 104-119.  doi: 10.1016/j.apnum.2018.03.004.
    [10] R. Chapko and B. T. Johansson, An iterative regularizing method for an incomplete boundary data problem for the biharmonic equation, ZAMM: Z. Angew. Math. Mech. 98 (2018), 2010–2021. doi: 10.1002/zamm.201800102.
    [11] G. Chen and  J. ZhouBoundary Element Methods with Applications to Nonlinear Problems, Atlantis Press, Paris, 2010.  doi: 10.2991/978-94-91216-27-5.
    [12] M. Costabel and M. Dauge, Invertibility of the biharmonic single layer potential operator, Integral Equations Operator Theory, 24 (1996), 46-67.  doi: 10.1007/BF01195484.
    [13] R. J. Duffin, Continuation of biharmonic functions by reflection, Duke Math. J., 22 (1955), 313-324.  doi: 10.1215/S0012-7094-55-02233-X.
    [14] R. Farwig, A note on the reflection principle for the biharmonic equation and the Stokes system, Acta Appl. Math., 37 (1994), 41-51.  doi: 10.1007/BF00995128.
    [15] M. Garshasbi and F. Hassani, Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method, Bull. Iranian Math. Soc., 42 (2016), 1039-1056. 
    [16] G. C. Hsiao and W. L. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-68545-6.
    [17] V. A. Kozlov and V. G. Maz;ya, On iterative procedures for solving ill-posed boundary value problems that preserve differential equations, Algebra i Analiz, 1 (1989), 144–170; English transl.: Leningrad Math. J., 1 (1990), 1207–1228.
    [18] R. Kress, Linear Integral Equations, ed. 3, Springer-Verlag, New York, 2014. doi: 10.1007/978-1-4614-9593-2.
    [19] D. LesnicL. Elliott and D. B. Ingham, An iterative boundary element method for solving numerically the Cauchy problem for the Laplace equation, Eng. Anal. Bound. Elem., 20 (1997), 123-133.  doi: 10.1016/S0955-7997(97)00056-8.
    [20] J.-C. Liu and Q. G. Zhang, Cauchy problem for the Laplace equation in 2D and 3D doubly connected domains, CMES Comput. Model. Eng. Sci., 93 (2013), 203-219. 
    [21] V. V. Meleshko, Selected topics in the history of the two-dimensional biharmonic problem, Appl. Mech. Rev., 56 (2003), 33-85.  doi: 10.1115/1.1521166.
    [22] I. Mitrea and M. Mitrea, Multi-layer Potentials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains, Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-32666-0.
    [23] T. V. Savina, On the dependence of the reflection operator on boundary conditions for biharmonic functions, J. Math. Anal. Appl., 370 (2010), 716-725.  doi: 10.1016/j.jmaa.2010.04.036.
    [24] Y. Sun, Indirect boundary integral equation method for the Cauchy problem of the Laplace equation, J. Sci. Comput., 71 (2017), 469-498.  doi: 10.1007/s10915-016-0308-4.
    [25] Y. SunD. Zhang and F. Ma, A potential function method for the Cauchy problem of elliptic operators, J. Math. Anal. Appl., 395 (2012), 164-174.  doi: 10.1016/j.jmaa.2012.05.038.
    [26] G. C. Verchota, The biharmonic Neumann problem in Lipschitz domains, Acta Math., 194 (2005), 217-279.  doi: 10.1007/BF02393222.
  • 加载中

Figures(1)

Tables(2)

SHARE

Article Metrics

HTML views(2941) PDF downloads(385) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return