[1]
|
A. Abbasi, B. V. Vahdat and G. E. Fakhim, An inverse solution for 2D electrical impedance tomography based on electrical properties of material blocks, Journal of Applied Sciences, 9 (2009), 1962-1967.
doi: 10.3923/jas.2009.1962.1967.
|
[2]
|
A. Abbasi and B. V. Vahdat, A non-iterative linear inverse solution for the block approach in EIT, Journal of Computational Science, 1 (2010), 190-196.
doi: 10.1016/j.jocs.2010.09.001.
|
[3]
|
A. Adler and R. Guardo, Electrical impedance tomography: Regularized imaging and contrast detection, IEEE Trans. Med. Imag., 15 (1996), 170-179.
doi: 10.1109/42.491418.
|
[4]
|
A. Adler et al., GREIT: A unified approach to 2D linear EIT reconstruction of lung images, Physiol. Meas., 30 (2009), S35.
|
[5]
|
M. Alsaker and J. L. Mueller, A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 1619-1654.
doi: 10.1137/15M1020137.
|
[6]
|
M. Alsaker, S. J. Hamilton and A. Hauptmann, A direct D-bar method for partial boundary data electrical impedance tomography with a priori information, Inverse Probl. Imag., 11 (2017), 427-454.
doi: 10.3934/ipi.2017020.
|
[7]
|
A. Borsic, B. M. Graham, A. Adler and W. R. B. Lionheart, In vivo impedance imaging with total variation regularization, IEEE Trans. Med. Imag., 29 (2010), 44-54.
doi: 10.1109/TMI.2009.2022540.
|
[8]
|
X. Chen, Ill-posed problems and regularization, Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, (2018), 281–289.
doi: 10.1002/9781119311997.app1.
|
[9]
|
D. Isaacson, M. Cheney, J. C. Newell, S. Simske and J. Goble, NOSER: An algorithm for solving the inverse conductivity problem, Int. J. Imag. Syst. Technol., 2 (1990), 66-75.
|
[10]
|
M. Cheney, D. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.
doi: 10.1137/S0036144598333613.
|
[11]
|
K.-S. Cheng, D. Isaacson, J. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924.
|
[12]
|
E. T. Chung, T. F. Chan and X. C. Tai, Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phy., 205 (2005), 357-372.
doi: 10.1016/j.jcp.2004.11.022.
|
[13]
|
C. Cohen-Bacrie, Y. Goussard and R. Guardo, Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint, IEEE Trans. Med. Imag., 16 (1997), 562-571.
|
[14]
|
E. L. V. Costa, J. B. Borges, A. Melo, F. Suarez-Sipmann, C. Toufen, S. H. Bohm and M. B. P. Amato, Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography, Intens. Care Med., 2012,165–170.
doi: 10.1007/978-3-642-28270-6_34.
|
[15]
|
K. Crane, Discrete Differential Geometry: An Applied Introduction, Carnegie Mellon University, Pittsburgh, USA, 2018.
|
[16]
|
D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography, Inverse Probl., 10 (1994), 317-334.
doi: 10.1088/0266-5611/10/2/008.
|
[17]
|
G. Franchineau, N. Brechot, G. Lebreton, G. Hekimian, A. Nieszkowska, J. Trouillet, P. Leprince, J. Chastre, C. Luyt, A. Combes and M. Schmidt, Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome, Am. J. Respir. Crit. Care Med., 196 (2017), 447-457.
doi: 10.1164/rccm.201605-1055OC.
|
[18]
|
I. Frerichs, J. Hinz, P. Herrmann, G. Weisser, G. Hahn, M. Quintel and G. Hellige, Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging, IEEE Trans. Med. Imag., 21 (2002), 646-652.
doi: 10.1109/TMI.2002.800585.
|
[19]
|
I. Frerichs, Z. Zhao, T. Becher, P. Zabel, N. Weiler and B. Vogt, Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma, Physiol. Meas., 37 (2016), 698-712.
doi: 10.1088/0967-3334/37/6/698.
|
[20]
|
N. P. Galatsanos and A. K. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Trans. Image Process., 1 (1992), 322-336.
doi: 10.1109/83.148606.
|
[21]
|
B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Probl., 23 (2007), 2159-2170.
doi: 10.1088/0266-5611/23/5/020.
|
[22]
|
M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: An experimental evaluation, J. Comput. Appl. Math., 236 (2012), 2126-2136.
doi: 10.1016/j.cam.2011.09.035.
|
[23]
|
G. H. Golub, M. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.
doi: 10.1080/00401706.1979.10489751.
|
[24]
|
G. González, J. M. J. Huttunen, V. Kolehmainen, A. Seppänen and M. Vauhkonen, Experimental evaluation of 3D electrical impedance tomography with total variation prior, Inverse Probl. Sci. En., 24 (2016), 1411-1431.
|
[25]
|
G. González, V. Kolehmainen and A. Seppänen, Isotropic and anisotropic total variation regularization in electrical impedance tomography, Comput. Math. Appl., 74 (2017), 564-576.
doi: 10.1016/j.camwa.2017.05.004.
|
[26]
|
T. M. Habashy and A. Abubakar, A general framework for constraint minimization for the inversion of electromagnetic measurements, Prog. Electromagn. Res., 46 (2004), 265-312.
doi: 10.2528/PIER03100702.
|
[27]
|
G. Hahn, A. Just, T. Dudykevych, I. Frerichs, J. Hinz, M. Quintel and G. Hellige, Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT, Physiol. Meas., 27 (2006), S187–S198.
doi: 10.1088/0967-3334/27/5/S16.
|
[28]
|
S. J. Hamilton, J. M. Reyes, S. Siltanen and X. Zhang, A hybrid segmentation and D-bar method for electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 770-793.
doi: 10.1137/15M1025992.
|
[29]
|
S. J. Hamilton, J. L. Mueller and M. Alsaker, Incorporating a spatial prior into nonlinear D-bar EIT imaging for complex admittivities, IEEE Trans. Med. Imag., 36 (2017), 457-466.
doi: 10.1109/TMI.2016.2613511.
|
[30]
|
M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Special section on imaging, Inverse probl., 19 (2003), S65–S90.
doi: 10.1088/0266-5611/19/6/055.
|
[31]
|
P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992), 561-580.
doi: 10.1137/1034115.
|
[32]
|
B. Harrach, Recent progress on the factorization method for electrical impedance tomography, Comput. Math. Methods Med., 2013 (2013), Art. ID 425184, 8 pp.
doi: 10.1155/2013/425184.
|
[33]
|
A. Hauptmann, M. Santacesaria and S. Siltanen, Direct inversion from partial-boundary data in electrical impedance tomography, Inverse Probl., 33 (2017), 025009, 26pp.
doi: 10.1088/1361-6420/33/2/025009.
|
[34]
|
A. Hauptmann, V. Kolehmainen, N. M. Mach, T. Savolainen, A. Seppänen and S. Siltanen, Open 2D electrical impedance tomography data archive, preprint, arXiv: 1704.01178.
|
[35]
|
A. N. Hirani, Discrete Exterior Calculus, Ph.D thesis, California Institute of Technology, 2003.
|
[36]
|
B. Jin, T. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization, Int. J. Numer. Meth. Eng., 89 (2012), 337-353.
doi: 10.1002/nme.3247.
|
[37]
|
K. Knudsen, M. Lassas, J. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imag., 3 (2009), 599-624.
doi: 10.3934/ipi.2009.3.599.
|
[38]
|
P. W. A. Kunst, A. V. Noordegraaf, O. S. Hoekstra, P. E. Postmus and P. M. J. M. De Vries, Ventilation and perfusion imaging by electrical impedance tomography: A comparison with radionuclide scanning, Physiol. Meas., 19 (1998), 481-490.
doi: 10.1088/0967-3334/19/4/003.
|
[39]
|
K. Lee, E. J. Woo and J. K. Seo, A fidelity-embedded regularization method for robust electrical impedance tomography, IEEE Trans. Med. Imag., 37 (2018), 1970-1977.
doi: 10.1109/TMI.2017.2762741.
|
[40]
|
S. Lehmann, S. Leonhardt, C. Ngo, L. Bergmann, S. Schrading, K. Heimann, N. Wagner and K. Tenbrock, Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury, Clin. Respir. J., 12 (2018), 68-75.
doi: 10.1111/crj.12481.
|
[41]
|
D. Liu, V. Kolehmainen, S. Siltanen, A. M. Laukkanen and A. Seppänen, Nonlinear difference imaging approach to three-dimensional electrical impedance tomography in the presence of geometric modeling errors, IEEE Trans. Biomed. Eng., 63 (2016), 1956-1965.
doi: 10.1109/TBME.2015.2509508.
|
[42]
|
D. Liu, A. K. Khambampati and J. Du, A parametric level set method for electrical impedance tomography, IEEE Trans. Med. Imag., 37 (2018), 451-460.
doi: 10.1109/TMI.2017.2756078.
|
[43]
|
D. Liu, D. Smyl and J. Du, A parametric level set-based approach to difference imaging in electrical impedance tomography, IEEE Trans. Med. Imag., 38 (2019), 145-155.
doi: 10.1109/TMI.2018.2857839.
|
[44]
|
S. Liu, J. Jia, Y. D. Zhang and Y. Yang, Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning, IEEE Trans. Med. Imag., 37 (2018), 2090-2102.
doi: 10.1109/TMI.2018.2816739.
|
[45]
|
M. B. Mazzoni, A. Perri, A. M. Plebani, S. Ferrari, G. Amelio, A. Rocchi, D. Consonni, G. P. Milani and E. F. Fossali, Electrical impedance tomography in children with community acquired pneumonia: Preliminary data, Resp. Med., 130 (2017), 9-12.
doi: 10.1016/j.rmed.2017.07.001.
|
[46]
|
M. Meyer, M. Desbrun, P. Schröder and A. H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds, Visualization and Mathematics III, Math. Vis., Springer, Berlin, (2003), 35–57.
|
[47]
|
J. L. Mueller, S. Siltanen and D. Isaacson, A direct reconstruction algorithm for electrical impedance tomography, IEEE Trans. Med. Imag., 21 (2002), 555-559.
doi: 10.1109/TMI.2002.800574.
|
[48]
|
J. L. Mueller, P. Muller, M. Mellenthin, R. Murthy, M. Capps, M. Alsaker, R. Deterding, S. D. Sagel and E. DeBoer, Estimating regions of air trapping from electrical impedance tomography data, Physiol. Meas., 39 (2018), 05NT01.
doi: 10.1088/1361-6579/aac295.
|
[49]
|
P. A. Muller, J. L. Mueller, M. Mellenthin, R. Murthy, M. Capps, B. D. Wagner, M. Alsaker, R. Deterding, S. D. Sagel and J. Hoppe, Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis, Physiol. Meas., 39 (2018), 045008.
doi: 10.1088/1361-6579/aab8c4.
|
[50]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Experimental mathematics: Computational issues in nonlinear science (Los Alamos, NM, 1991), Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[51]
|
J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Applied Computational Geometry Towards Geometric Engineering, (eds. M. C. Lin and D. Manocha), Springer, Berlin, Heidelberg, (1996), 203–222.
|
[52]
|
S. Siltanen, J. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse probl., 16 (2000), 681-699.
doi: 10.1088/0266-5611/16/3/310.
|
[53]
|
M. Soleimani, C. E. Powell and N. Polydorides, Improving the forward solver for the complete electrode model in EIT using algebraic multigrid, IEEE Trans. Med. Imag., 24 (2005), 577-583.
doi: 10.1109/TMI.2005.843741.
|
[54]
|
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.
doi: 10.1137/0152060.
|
[55]
|
J. N. Tehrani, A. McEwan, C. Jin and A. Van Schaik, L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve), Appl. Math. Model., 36 (2012), 1095-1105.
doi: 10.1016/j.apm.2011.07.055.
|
[56]
|
C. J. Trepte, C. R. Phillips, J. Solà, A. Adler, S. A. Haas, M. Rapin, S. H. Böhm and D. A. Reuter, Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury, Crit. Care, 20 (2016), Article 18.
doi: 10.1186/s13054-015-1173-5.
|
[57]
|
P. M. van den Berg, A. L. Van Broekhoven and A. Abubakar, Extended contrast source inversion, Inverse Probl., 15 (1999), 1325-1344.
doi: 10.1088/0266-5611/15/5/315.
|
[58]
|
P. M. van den Berg, A. Abubakar and J. T. Fokkema, Multiplicative regularization for contrast profile inversion, Radio Sci., 38 (2003), 23-1–23-10.
|
[59]
|
M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo and J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE Trans. Med. Imag., 17 (1998), 285-293.
doi: 10.1109/42.700740.
|
[60]
|
P. J. Vauhkonen, M. Vauhkonen, T. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), 1150-1160.
doi: 10.1109/10.784147.
|
[61]
|
J. A. Victorino, J. B. Borges, V. N. Okamoto, G. F. J. Matos, M. R. Tucci, M. P. R. Caramez, H. Tanaka, F. S. Sipmann, D. C. B. Santos, C. S. V. Barbas, C. R. R. Carvalho and M. B. P. Amato, Imbalances in regional lung ventilation: A validation study on electrical impedance tomography, Am. J. Respir. Crit. Care Med., 169 (2004), 791-800.
|
[62]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[63]
|
E. J. Woo, P. Hua, J. G. Webster and W. J. Tompkins, A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography, IEEE Trans. Med. Imag., 12 (1993), 137-146.
doi: 10.1109/42.232242.
|
[64]
|
Y. Yang, H. Wu and J. Jia, Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation, IEEE Sens. J., 17 (2017), 5589-5598.
doi: 10.1109/JSEN.2017.2728179.
|
[65]
|
T. J. Yorkey, J. G. Webster and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Eng., BME-34 (1987), 843-852.
doi: 10.1109/TBME.1987.326032.
|
[66]
|
A. Zakaria and J. LoVetri, Application of multiplicative regularization to the finite-element contrast source inversion method, IEEE Trans. Antenn. Propag., 59 (2011), 3495-3498.
doi: 10.1109/TAP.2011.2161564.
|
[67]
|
A. Zakaria, I. Jefirey and J. LoVetri, Full-vectorial parallel finite-element contrast source inversion method, Prog. Electromagn. Res., 142 (2013), 463-483.
doi: 10.2528/PIER13080706.
|
[68]
|
L. Zhou, B. Harrach and J. K. Seo, Monotonicity-based electrical impedance tomography for lung imaging, Inverse Probl., 34 (2018), 045005, 25pp.
doi: 10.1088/1361-6420/aaaf84.
|