\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Electrical impedance tomography with multiplicative regularization

  • * Corresponding author: Maokun Li

    * Corresponding author: Maokun Li 

This work was supported in part by the National Science Foundation of China under Grant 61571264, in part by the National Key R & D Program of China under Grant 2018YFC0603604, in part by the Guangzhou Science and Technology Plan under Grant 201804010266, in part by the Beijing Innovation Center for Future Chip, and in part by the Research Institute of Tsinghua, Pearl River Delta

Abstract Full Text(HTML) Figure(12) / Table(2) Related Papers Cited by
  • It is known that EIT inversion is an ill-posed problem, meaning that the solution is unstable if noise exists in the measured data. Generally, a regularization scheme is needed to alleviate the ill-posedness. In this work, a multiplicative regularization scheme is applied to EIT inversion. In this regularization scheme, a cost functional is constructed in which the data misfit functional is multiplied by a regularization factor, and no regularization parameter is needed. The regularization factor is based on the weighted $ L2 $-norm favoring 'blocky' profiles in the reconstructed images. Gauss–Newton method is used to minimize the cost functional iteratively. In the implementation of the multiplicative regularization scheme, the spatial gradient and divergence need to be computed on triangular meshes. For this purpose, the discrete exterior calculus (DEC) theory is applied to formulate the related discrete operators. Numerical and experimental results show good anti-noise performance of the multiplicative regularization scheme in EIT inverse problem.

    Mathematics Subject Classification: Primary: 65N21.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Simplices and their circumcentric duals in 2D space. The Greek letter $ \tau $ is used to represent the simplex. The superscript of a simplex is its dimension. In the diagrams of the duals of the simplices, the notation '$ \star $' is the star duality operator, and the solid points inside the triangles are their circumcenters

    Figure 2.  An illustration of the computation of the discrete gradient at the dual of Triangle $ \tau^2 $. The three vertices of Triangle $ \tau^2 $ are represented by $ \tau_1^0 $, $ \tau_2^0 $, and $ \tau_3^0 $. Here we choose Vertex $ \tau_3^0 $ as the reference vertex $ v $

    Figure 3.  A 1-ring of a vertex $ \tau^0 $ to illustrate the computation of the discrete divergence at $ \tau^0 $. The shaded region is the Voronoi region of Vertex $ \tau^0 $. The edges sharing Vertex $ \tau^0 $ are pointing outwards

    Figure 4.  A 1-ring of a vertex $ \tau^0 $ to illustrate the computation of the discrete Laplacian at $ \tau^0 $. All the information needed is the conductivity values at Vertex $ \tau^0 $ and the vertices adjacent to it, as well as the geometry of the mesh. The shaded region is the Voronoi region of Vertex $ \tau^0 $

    Figure 5.  Two-dimensional thoracic numerical model and the inversion mesh. (a) The model. Conductivity settings: lungs: 0.05 S/m, heart: 0.2 S/m, background: 0.15 S/m. Sixteen electrodes are around the boundary (shown as the bolded line segments). (b) An arbitrary mesh used for inversion

    Figure 6.  Reconstruction results of the model shown in Figure 5(a) using two different kinds of regularization schemes: multiplicative weighted $ L2 $-norm regularization (MR-WL2, first row) and additive TV regularization (AR-TV, second row). The first, second, third, and fourth columns correspond to the reconstruction results using data with 0%, 1%, 3%, and 5% noise, respectively. All the reconstructions are at the 12th iterations

    Figure 7.  Comparison of convergence curves for the multiplicative weighted $ L $2-norm regularization (MR-WL2) and the additive TV regularization (AR-TV). The curves correspond to the numerical example shown in Figure 6

    Figure 8.  Two-dimensional thoracic numerical model with pleural effusion in the dorsal part of the right lung. The conductivity settings are the same as those in the model shown in Figure 5(a) except that the conductivity of the pleural effusion area is 0.2 S/m

    Figure 9.  Reconstruction results of the model shown in Figure 8 using two different kinds of regularization schemes: multiplicative weighted $ L2 $-norm regularization (MR-WL2, first row) and additive TV regularization (AR-TV, second row). The first, second, third, and fourth columns correspond to the reconstruction results using data with 0%, 1%, 2%, and 3% noise, respectively. All the reconstructions are at the 12th iterations

    Figure 10.  Reconstruction results using measured data. The first column shows the photos of the phantoms. Phantom 2.2: two plastic inclusions; Phantom 3.1: three plastic inclusions; Phantom 4.1: one metallic (circular, hollow) and one plastic (triangular) inclusions; Phantom 5.2: two metallic (circular, hollow) and one plastic (triangular) inclusions. The second column shows the reconstruction results corresponding to each phantom using the multiplicative weighted $ L $2-norm regularization (MR-WL2). The third column shows the reconstruction results corresponding to each phantom using the additive TV regularization (AR-TV)

    Figure 11.  Three-dimensional thoracic numerical model and the inversion mesh. The tetrahedral elements in the upper part of the meshes are masked in order to show the interior structures. (a) The model. Conductivity settings: lungs: 0.05 S/m, heart: 0.2 S/m, background: 0.15 S/m. Sixteen circular electrodes are around the same height of the boundary. (b) An arbitrary mesh used for inversion

    Figure 12.  Reconstructed images on the electrode plane using the multiplicative weighted $ L $2-norm regularization and synthetic data from the 3D thorax model shown in Figure 11(a)

    Table 1.  Structural similarity (SSIM) index calculated for the reconstruction results in Section 5 (Figure 6 and 9)

    2D numerical example 1 2D numerical example 2
    Noise level 0% 1% 3% 5% 0% 1% 2% 3%
    MR-WL2$ ^* $ 0.9532 0.9007 0.8845 0.8718 0.9571 0.9107 0.8894 0.8807
    AR-TV$ ^\dagger $ 0.9591 0.8954 0.8755 0.8530 0.9581 0.9005 0.8805 0.8636
    * Multiplicative weighted L2-norm regularization
    Additive total variation regularization
     | Show Table
    DownLoad: CSV

    Table 2.  Parameter values of the additive TV regularization in the reconstructions using the tank data

    Phantom 2.2 Phantom 3.1 Phantom 4.1 Phantom 5.2
    $ \alpha $ $ 1\times10^{-3} $ $ 1\times10^{-3} $ $ 1\times10^{-3} $ $ 1\times10^{-3} $
    $ \beta $ $ 1\times10^{-24} $ $ 1\times10^{-23} $ $ 1\times10^{-20} $ $ 1\times10^{-18} $
     | Show Table
    DownLoad: CSV
  • [1] A. AbbasiB. V. Vahdat and G. E. Fakhim, An inverse solution for 2D electrical impedance tomography based on electrical properties of material blocks, Journal of Applied Sciences, 9 (2009), 1962-1967.  doi: 10.3923/jas.2009.1962.1967.
    [2] A. Abbasi and B. V. Vahdat, A non-iterative linear inverse solution for the block approach in EIT, Journal of Computational Science, 1 (2010), 190-196.  doi: 10.1016/j.jocs.2010.09.001.
    [3] A. Adler and R. Guardo, Electrical impedance tomography: Regularized imaging and contrast detection, IEEE Trans. Med. Imag., 15 (1996), 170-179.  doi: 10.1109/42.491418.
    [4] A. Adler et al., GREIT: A unified approach to 2D linear EIT reconstruction of lung images, Physiol. Meas., 30 (2009), S35.
    [5] M. Alsaker and J. L. Mueller, A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 1619-1654.  doi: 10.1137/15M1020137.
    [6] M. AlsakerS. J. Hamilton and A. Hauptmann, A direct D-bar method for partial boundary data electrical impedance tomography with a priori information, Inverse Probl. Imag., 11 (2017), 427-454.  doi: 10.3934/ipi.2017020.
    [7] A. BorsicB. M. GrahamA. Adler and W. R. B. Lionheart, In vivo impedance imaging with total variation regularization, IEEE Trans. Med. Imag., 29 (2010), 44-54.  doi: 10.1109/TMI.2009.2022540.
    [8] X. Chen, Ill-posed problems and regularization, Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, (2018), 281–289. doi: 10.1002/9781119311997.app1.
    [9] D. IsaacsonM. CheneyJ. C. NewellS. Simske and J. Goble, NOSER: An algorithm for solving the inverse conductivity problem, Int. J. Imag. Syst. Technol., 2 (1990), 66-75. 
    [10] M. CheneyD. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.  doi: 10.1137/S0036144598333613.
    [11] K.-S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924. 
    [12] E. T. ChungT. F. Chan and X. C. Tai, Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phy., 205 (2005), 357-372.  doi: 10.1016/j.jcp.2004.11.022.
    [13] C. Cohen-BacrieY. Goussard and R. Guardo, Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint, IEEE Trans. Med. Imag., 16 (1997), 562-571. 
    [14] E. L. V. Costa, J. B. Borges, A. Melo, F. Suarez-Sipmann, C. Toufen, S. H. Bohm and M. B. P. Amato, Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography, Intens. Care Med., 2012,165–170. doi: 10.1007/978-3-642-28270-6_34.
    [15] K. Crane, Discrete Differential Geometry: An Applied Introduction, Carnegie Mellon University, Pittsburgh, USA, 2018.
    [16] D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography, Inverse Probl., 10 (1994), 317-334.  doi: 10.1088/0266-5611/10/2/008.
    [17] G. FranchineauN. BrechotG. LebretonG. HekimianA. NieszkowskaJ. TrouilletP. LeprinceJ. ChastreC. LuytA. Combes and M. Schmidt, Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome, Am. J. Respir. Crit. Care Med., 196 (2017), 447-457.  doi: 10.1164/rccm.201605-1055OC.
    [18] I. FrerichsJ. HinzP. HerrmannG. WeisserG. HahnM. Quintel and G. Hellige, Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging, IEEE Trans. Med. Imag., 21 (2002), 646-652.  doi: 10.1109/TMI.2002.800585.
    [19] I. FrerichsZ. ZhaoT. BecherP. ZabelN. Weiler and B. Vogt, Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma, Physiol. Meas., 37 (2016), 698-712.  doi: 10.1088/0967-3334/37/6/698.
    [20] N. P. Galatsanos and A. K. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Trans. Image Process., 1 (1992), 322-336.  doi: 10.1109/83.148606.
    [21] B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Probl., 23 (2007), 2159-2170.  doi: 10.1088/0266-5611/23/5/020.
    [22] M. GehreT. KluthA. LipponenB. JinA. SeppänenJ. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: An experimental evaluation, J. Comput. Appl. Math., 236 (2012), 2126-2136.  doi: 10.1016/j.cam.2011.09.035.
    [23] G. H. GolubM. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.  doi: 10.1080/00401706.1979.10489751.
    [24] G. GonzálezJ. M. J. HuttunenV. KolehmainenA. Seppänen and M. Vauhkonen, Experimental evaluation of 3D electrical impedance tomography with total variation prior, Inverse Probl. Sci. En., 24 (2016), 1411-1431. 
    [25] G. GonzálezV. Kolehmainen and A. Seppänen, Isotropic and anisotropic total variation regularization in electrical impedance tomography, Comput. Math. Appl., 74 (2017), 564-576.  doi: 10.1016/j.camwa.2017.05.004.
    [26] T. M. Habashy and A. Abubakar, A general framework for constraint minimization for the inversion of electromagnetic measurements, Prog. Electromagn. Res., 46 (2004), 265-312.  doi: 10.2528/PIER03100702.
    [27] G. Hahn, A. Just, T. Dudykevych, I. Frerichs, J. Hinz, M. Quintel and G. Hellige, Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT, Physiol. Meas., 27 (2006), S187–S198. doi: 10.1088/0967-3334/27/5/S16.
    [28] S. J. HamiltonJ. M. ReyesS. Siltanen and X. Zhang, A hybrid segmentation and D-bar method for electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 770-793.  doi: 10.1137/15M1025992.
    [29] S. J. HamiltonJ. L. Mueller and M. Alsaker, Incorporating a spatial prior into nonlinear D-bar EIT imaging for complex admittivities, IEEE Trans. Med. Imag., 36 (2017), 457-466.  doi: 10.1109/TMI.2016.2613511.
    [30] M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Special section on imaging, Inverse probl., 19 (2003), S65–S90. doi: 10.1088/0266-5611/19/6/055.
    [31] P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992), 561-580.  doi: 10.1137/1034115.
    [32] B. Harrach, Recent progress on the factorization method for electrical impedance tomography, Comput. Math. Methods Med., 2013 (2013), Art. ID 425184, 8 pp. doi: 10.1155/2013/425184.
    [33] A. Hauptmann, M. Santacesaria and S. Siltanen, Direct inversion from partial-boundary data in electrical impedance tomography, Inverse Probl., 33 (2017), 025009, 26pp. doi: 10.1088/1361-6420/33/2/025009.
    [34] A. Hauptmann, V. Kolehmainen, N. M. Mach, T. Savolainen, A. Seppänen and S. Siltanen, Open 2D electrical impedance tomography data archive, preprint, arXiv: 1704.01178.
    [35] A. N. Hirani, Discrete Exterior Calculus, Ph.D thesis, California Institute of Technology, 2003.
    [36] B. JinT. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization, Int. J. Numer. Meth. Eng., 89 (2012), 337-353.  doi: 10.1002/nme.3247.
    [37] K. KnudsenM. LassasJ. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imag., 3 (2009), 599-624.  doi: 10.3934/ipi.2009.3.599.
    [38] P. W. A. KunstA. V. NoordegraafO. S. HoekstraP. E. Postmus and P. M. J. M. De Vries, Ventilation and perfusion imaging by electrical impedance tomography: A comparison with radionuclide scanning, Physiol. Meas., 19 (1998), 481-490.  doi: 10.1088/0967-3334/19/4/003.
    [39] K. LeeE. J. Woo and J. K. Seo, A fidelity-embedded regularization method for robust electrical impedance tomography, IEEE Trans. Med. Imag., 37 (2018), 1970-1977.  doi: 10.1109/TMI.2017.2762741.
    [40] S. LehmannS. LeonhardtC. NgoL. BergmannS. SchradingK. HeimannN. Wagner and K. Tenbrock, Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury, Clin. Respir. J., 12 (2018), 68-75.  doi: 10.1111/crj.12481.
    [41] D. LiuV. KolehmainenS. SiltanenA. M. Laukkanen and A. Seppänen, Nonlinear difference imaging approach to three-dimensional electrical impedance tomography in the presence of geometric modeling errors, IEEE Trans. Biomed. Eng., 63 (2016), 1956-1965.  doi: 10.1109/TBME.2015.2509508.
    [42] D. LiuA. K. Khambampati and J. Du, A parametric level set method for electrical impedance tomography, IEEE Trans. Med. Imag., 37 (2018), 451-460.  doi: 10.1109/TMI.2017.2756078.
    [43] D. LiuD. Smyl and J. Du, A parametric level set-based approach to difference imaging in electrical impedance tomography, IEEE Trans. Med. Imag., 38 (2019), 145-155.  doi: 10.1109/TMI.2018.2857839.
    [44] S. LiuJ. JiaY. D. Zhang and Y. Yang, Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning, IEEE Trans. Med. Imag., 37 (2018), 2090-2102.  doi: 10.1109/TMI.2018.2816739.
    [45] M. B. MazzoniA. PerriA. M. PlebaniS. FerrariG. AmelioA. RocchiD. ConsonniG. P. Milani and E. F. Fossali, Electrical impedance tomography in children with community acquired pneumonia: Preliminary data, Resp. Med., 130 (2017), 9-12.  doi: 10.1016/j.rmed.2017.07.001.
    [46] M. Meyer, M. Desbrun, P. Schröder and A. H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds, Visualization and Mathematics III, Math. Vis., Springer, Berlin, (2003), 35–57.
    [47] J. L. MuellerS. Siltanen and D. Isaacson, A direct reconstruction algorithm for electrical impedance tomography, IEEE Trans. Med. Imag., 21 (2002), 555-559.  doi: 10.1109/TMI.2002.800574.
    [48] J. L. Mueller, P. Muller, M. Mellenthin, R. Murthy, M. Capps, M. Alsaker, R. Deterding, S. D. Sagel and E. DeBoer, Estimating regions of air trapping from electrical impedance tomography data, Physiol. Meas., 39 (2018), 05NT01. doi: 10.1088/1361-6579/aac295.
    [49] P. A. Muller, J. L. Mueller, M. Mellenthin, R. Murthy, M. Capps, B. D. Wagner, M. Alsaker, R. Deterding, S. D. Sagel and J. Hoppe, Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis, Physiol. Meas., 39 (2018), 045008. doi: 10.1088/1361-6579/aab8c4.
    [50] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Experimental mathematics: Computational issues in nonlinear science (Los Alamos, NM, 1991), Physica D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [51] J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Applied Computational Geometry Towards Geometric Engineering, (eds. M. C. Lin and D. Manocha), Springer, Berlin, Heidelberg, (1996), 203–222.
    [52] S. SiltanenJ. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse probl., 16 (2000), 681-699.  doi: 10.1088/0266-5611/16/3/310.
    [53] M. SoleimaniC. E. Powell and N. Polydorides, Improving the forward solver for the complete electrode model in EIT using algebraic multigrid, IEEE Trans. Med. Imag., 24 (2005), 577-583.  doi: 10.1109/TMI.2005.843741.
    [54] E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.  doi: 10.1137/0152060.
    [55] J. N. TehraniA. McEwanC. Jin and A. Van Schaik, L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve), Appl. Math. Model., 36 (2012), 1095-1105.  doi: 10.1016/j.apm.2011.07.055.
    [56] C. J. Trepte, C. R. Phillips, J. Solà, A. Adler, S. A. Haas, M. Rapin, S. H. Böhm and D. A. Reuter, Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury, Crit. Care, 20 (2016), Article 18. doi: 10.1186/s13054-015-1173-5.
    [57] P. M. van den BergA. L. Van Broekhoven and A. Abubakar, Extended contrast source inversion, Inverse Probl., 15 (1999), 1325-1344.  doi: 10.1088/0266-5611/15/5/315.
    [58] P. M. van den Berg, A. Abubakar and J. T. Fokkema, Multiplicative regularization for contrast profile inversion, Radio Sci., 38 (2003), 23-1–23-10.
    [59] M. VauhkonenD. VadaszP. A. KarjalainenE. Somersalo and J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE Trans. Med. Imag., 17 (1998), 285-293.  doi: 10.1109/42.700740.
    [60] P. J. VauhkonenM. VauhkonenT. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), 1150-1160.  doi: 10.1109/10.784147.
    [61] J. A. VictorinoJ. B. BorgesV. N. OkamotoG. F. J. MatosM. R. TucciM. P. R. CaramezH. TanakaF. S. SipmannD. C. B. SantosC. S. V. BarbasC. R. R. Carvalho and M. B. P. Amato, Imbalances in regional lung ventilation: A validation study on electrical impedance tomography, Am. J. Respir. Crit. Care Med., 169 (2004), 791-800. 
    [62] Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.
    [63] E. J. WooP. HuaJ. G. Webster and W. J. Tompkins, A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography, IEEE Trans. Med. Imag., 12 (1993), 137-146.  doi: 10.1109/42.232242.
    [64] Y. YangH. Wu and J. Jia, Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation, IEEE Sens. J., 17 (2017), 5589-5598.  doi: 10.1109/JSEN.2017.2728179.
    [65] T. J. YorkeyJ. G. Webster and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Eng., BME-34 (1987), 843-852.  doi: 10.1109/TBME.1987.326032.
    [66] A. Zakaria and J. LoVetri, Application of multiplicative regularization to the finite-element contrast source inversion method, IEEE Trans. Antenn. Propag., 59 (2011), 3495-3498.  doi: 10.1109/TAP.2011.2161564.
    [67] A. ZakariaI. Jefirey and J. LoVetri, Full-vectorial parallel finite-element contrast source inversion method, Prog. Electromagn. Res., 142 (2013), 463-483.  doi: 10.2528/PIER13080706.
    [68] L. Zhou, B. Harrach and J. K. Seo, Monotonicity-based electrical impedance tomography for lung imaging, Inverse Probl., 34 (2018), 045005, 25pp. doi: 10.1088/1361-6420/aaaf84.
  • 加载中

Figures(12)

Tables(2)

SHARE

Article Metrics

HTML views(334) PDF downloads(495) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return