December  2019, 13(6): 1139-1159. doi: 10.3934/ipi.2019051

Electrical impedance tomography with multiplicative regularization

1. 

State Key Laboratory on Microwave and Digital Communications, Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

2. 

Schlumberger, Houston, TX 77056, USA

* Corresponding author: Maokun Li

Received  November 2017 Revised  June 2019 Published  October 2019

Fund Project: This work was supported in part by the National Science Foundation of China under Grant 61571264, in part by the National Key R & D Program of China under Grant 2018YFC0603604, in part by the Guangzhou Science and Technology Plan under Grant 201804010266, in part by the Beijing Innovation Center for Future Chip, and in part by the Research Institute of Tsinghua, Pearl River Delta

It is known that EIT inversion is an ill-posed problem, meaning that the solution is unstable if noise exists in the measured data. Generally, a regularization scheme is needed to alleviate the ill-posedness. In this work, a multiplicative regularization scheme is applied to EIT inversion. In this regularization scheme, a cost functional is constructed in which the data misfit functional is multiplied by a regularization factor, and no regularization parameter is needed. The regularization factor is based on the weighted $ L2 $-norm favoring 'blocky' profiles in the reconstructed images. Gauss–Newton method is used to minimize the cost functional iteratively. In the implementation of the multiplicative regularization scheme, the spatial gradient and divergence need to be computed on triangular meshes. For this purpose, the discrete exterior calculus (DEC) theory is applied to formulate the related discrete operators. Numerical and experimental results show good anti-noise performance of the multiplicative regularization scheme in EIT inverse problem.

Citation: Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, Aria Abubakar. Electrical impedance tomography with multiplicative regularization. Inverse Problems & Imaging, 2019, 13 (6) : 1139-1159. doi: 10.3934/ipi.2019051
References:
[1]

A. AbbasiB. V. Vahdat and G. E. Fakhim, An inverse solution for 2D electrical impedance tomography based on electrical properties of material blocks, Journal of Applied Sciences, 9 (2009), 1962-1967.  doi: 10.3923/jas.2009.1962.1967.  Google Scholar

[2]

A. Abbasi and B. V. Vahdat, A non-iterative linear inverse solution for the block approach in EIT, Journal of Computational Science, 1 (2010), 190-196.  doi: 10.1016/j.jocs.2010.09.001.  Google Scholar

[3]

A. Adler and R. Guardo, Electrical impedance tomography: Regularized imaging and contrast detection, IEEE Trans. Med. Imag., 15 (1996), 170-179.  doi: 10.1109/42.491418.  Google Scholar

[4]

A. Adler et al., GREIT: A unified approach to 2D linear EIT reconstruction of lung images, Physiol. Meas., 30 (2009), S35. Google Scholar

[5]

M. Alsaker and J. L. Mueller, A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 1619-1654.  doi: 10.1137/15M1020137.  Google Scholar

[6]

M. AlsakerS. J. Hamilton and A. Hauptmann, A direct D-bar method for partial boundary data electrical impedance tomography with a priori information, Inverse Probl. Imag., 11 (2017), 427-454.  doi: 10.3934/ipi.2017020.  Google Scholar

[7]

A. BorsicB. M. GrahamA. Adler and W. R. B. Lionheart, In vivo impedance imaging with total variation regularization, IEEE Trans. Med. Imag., 29 (2010), 44-54.  doi: 10.1109/TMI.2009.2022540.  Google Scholar

[8]

X. Chen, Ill-posed problems and regularization, Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, (2018), 281–289. doi: 10.1002/9781119311997.app1.  Google Scholar

[9]

D. IsaacsonM. CheneyJ. C. NewellS. Simske and J. Goble, NOSER: An algorithm for solving the inverse conductivity problem, Int. J. Imag. Syst. Technol., 2 (1990), 66-75.   Google Scholar

[10]

M. CheneyD. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.  doi: 10.1137/S0036144598333613.  Google Scholar

[11]

K.-S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924.   Google Scholar

[12]

E. T. ChungT. F. Chan and X. C. Tai, Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phy., 205 (2005), 357-372.  doi: 10.1016/j.jcp.2004.11.022.  Google Scholar

[13]

C. Cohen-BacrieY. Goussard and R. Guardo, Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint, IEEE Trans. Med. Imag., 16 (1997), 562-571.   Google Scholar

[14]

E. L. V. Costa, J. B. Borges, A. Melo, F. Suarez-Sipmann, C. Toufen, S. H. Bohm and M. B. P. Amato, Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography, Intens. Care Med., 2012,165–170. doi: 10.1007/978-3-642-28270-6_34.  Google Scholar

[15]

K. Crane, Discrete Differential Geometry: An Applied Introduction, Carnegie Mellon University, Pittsburgh, USA, 2018. Google Scholar

[16]

D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography, Inverse Probl., 10 (1994), 317-334.  doi: 10.1088/0266-5611/10/2/008.  Google Scholar

[17]

G. FranchineauN. BrechotG. LebretonG. HekimianA. NieszkowskaJ. TrouilletP. LeprinceJ. ChastreC. LuytA. Combes and M. Schmidt, Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome, Am. J. Respir. Crit. Care Med., 196 (2017), 447-457.  doi: 10.1164/rccm.201605-1055OC.  Google Scholar

[18]

I. FrerichsJ. HinzP. HerrmannG. WeisserG. HahnM. Quintel and G. Hellige, Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging, IEEE Trans. Med. Imag., 21 (2002), 646-652.  doi: 10.1109/TMI.2002.800585.  Google Scholar

[19]

I. FrerichsZ. ZhaoT. BecherP. ZabelN. Weiler and B. Vogt, Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma, Physiol. Meas., 37 (2016), 698-712.  doi: 10.1088/0967-3334/37/6/698.  Google Scholar

[20]

N. P. Galatsanos and A. K. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Trans. Image Process., 1 (1992), 322-336.  doi: 10.1109/83.148606.  Google Scholar

[21]

B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Probl., 23 (2007), 2159-2170.  doi: 10.1088/0266-5611/23/5/020.  Google Scholar

[22]

M. GehreT. KluthA. LipponenB. JinA. SeppänenJ. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: An experimental evaluation, J. Comput. Appl. Math., 236 (2012), 2126-2136.  doi: 10.1016/j.cam.2011.09.035.  Google Scholar

[23]

G. H. GolubM. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.  doi: 10.1080/00401706.1979.10489751.  Google Scholar

[24]

G. GonzálezJ. M. J. HuttunenV. KolehmainenA. Seppänen and M. Vauhkonen, Experimental evaluation of 3D electrical impedance tomography with total variation prior, Inverse Probl. Sci. En., 24 (2016), 1411-1431.   Google Scholar

[25]

G. GonzálezV. Kolehmainen and A. Seppänen, Isotropic and anisotropic total variation regularization in electrical impedance tomography, Comput. Math. Appl., 74 (2017), 564-576.  doi: 10.1016/j.camwa.2017.05.004.  Google Scholar

[26]

T. M. Habashy and A. Abubakar, A general framework for constraint minimization for the inversion of electromagnetic measurements, Prog. Electromagn. Res., 46 (2004), 265-312.  doi: 10.2528/PIER03100702.  Google Scholar

[27]

G. Hahn, A. Just, T. Dudykevych, I. Frerichs, J. Hinz, M. Quintel and G. Hellige, Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT, Physiol. Meas., 27 (2006), S187–S198. doi: 10.1088/0967-3334/27/5/S16.  Google Scholar

[28]

S. J. HamiltonJ. M. ReyesS. Siltanen and X. Zhang, A hybrid segmentation and D-bar method for electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 770-793.  doi: 10.1137/15M1025992.  Google Scholar

[29]

S. J. HamiltonJ. L. Mueller and M. Alsaker, Incorporating a spatial prior into nonlinear D-bar EIT imaging for complex admittivities, IEEE Trans. Med. Imag., 36 (2017), 457-466.  doi: 10.1109/TMI.2016.2613511.  Google Scholar

[30]

M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Special section on imaging, Inverse probl., 19 (2003), S65–S90. doi: 10.1088/0266-5611/19/6/055.  Google Scholar

[31]

P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992), 561-580.  doi: 10.1137/1034115.  Google Scholar

[32]

B. Harrach, Recent progress on the factorization method for electrical impedance tomography, Comput. Math. Methods Med., 2013 (2013), Art. ID 425184, 8 pp. doi: 10.1155/2013/425184.  Google Scholar

[33]

A. Hauptmann, M. Santacesaria and S. Siltanen, Direct inversion from partial-boundary data in electrical impedance tomography, Inverse Probl., 33 (2017), 025009, 26pp. doi: 10.1088/1361-6420/33/2/025009.  Google Scholar

[34]

A. Hauptmann, V. Kolehmainen, N. M. Mach, T. Savolainen, A. Seppänen and S. Siltanen, Open 2D electrical impedance tomography data archive, preprint, arXiv: 1704.01178. Google Scholar

[35]

A. N. Hirani, Discrete Exterior Calculus, Ph.D thesis, California Institute of Technology, 2003.  Google Scholar

[36]

B. JinT. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization, Int. J. Numer. Meth. Eng., 89 (2012), 337-353.  doi: 10.1002/nme.3247.  Google Scholar

[37]

K. KnudsenM. LassasJ. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imag., 3 (2009), 599-624.  doi: 10.3934/ipi.2009.3.599.  Google Scholar

[38]

P. W. A. KunstA. V. NoordegraafO. S. HoekstraP. E. Postmus and P. M. J. M. De Vries, Ventilation and perfusion imaging by electrical impedance tomography: A comparison with radionuclide scanning, Physiol. Meas., 19 (1998), 481-490.  doi: 10.1088/0967-3334/19/4/003.  Google Scholar

[39]

K. LeeE. J. Woo and J. K. Seo, A fidelity-embedded regularization method for robust electrical impedance tomography, IEEE Trans. Med. Imag., 37 (2018), 1970-1977.  doi: 10.1109/TMI.2017.2762741.  Google Scholar

[40]

S. LehmannS. LeonhardtC. NgoL. BergmannS. SchradingK. HeimannN. Wagner and K. Tenbrock, Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury, Clin. Respir. J., 12 (2018), 68-75.  doi: 10.1111/crj.12481.  Google Scholar

[41]

D. LiuV. KolehmainenS. SiltanenA. M. Laukkanen and A. Seppänen, Nonlinear difference imaging approach to three-dimensional electrical impedance tomography in the presence of geometric modeling errors, IEEE Trans. Biomed. Eng., 63 (2016), 1956-1965.  doi: 10.1109/TBME.2015.2509508.  Google Scholar

[42]

D. LiuA. K. Khambampati and J. Du, A parametric level set method for electrical impedance tomography, IEEE Trans. Med. Imag., 37 (2018), 451-460.  doi: 10.1109/TMI.2017.2756078.  Google Scholar

[43]

D. LiuD. Smyl and J. Du, A parametric level set-based approach to difference imaging in electrical impedance tomography, IEEE Trans. Med. Imag., 38 (2019), 145-155.  doi: 10.1109/TMI.2018.2857839.  Google Scholar

[44]

S. LiuJ. JiaY. D. Zhang and Y. Yang, Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning, IEEE Trans. Med. Imag., 37 (2018), 2090-2102.  doi: 10.1109/TMI.2018.2816739.  Google Scholar

[45]

M. B. MazzoniA. PerriA. M. PlebaniS. FerrariG. AmelioA. RocchiD. ConsonniG. P. Milani and E. F. Fossali, Electrical impedance tomography in children with community acquired pneumonia: Preliminary data, Resp. Med., 130 (2017), 9-12.  doi: 10.1016/j.rmed.2017.07.001.  Google Scholar

[46]

M. Meyer, M. Desbrun, P. Schröder and A. H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds, Visualization and Mathematics III, Math. Vis., Springer, Berlin, (2003), 35–57.  Google Scholar

[47]

J. L. MuellerS. Siltanen and D. Isaacson, A direct reconstruction algorithm for electrical impedance tomography, IEEE Trans. Med. Imag., 21 (2002), 555-559.  doi: 10.1109/TMI.2002.800574.  Google Scholar

[48]

J. L. Mueller, P. Muller, M. Mellenthin, R. Murthy, M. Capps, M. Alsaker, R. Deterding, S. D. Sagel and E. DeBoer, Estimating regions of air trapping from electrical impedance tomography data, Physiol. Meas., 39 (2018), 05NT01. doi: 10.1088/1361-6579/aac295.  Google Scholar

[49]

P. A. Muller, J. L. Mueller, M. Mellenthin, R. Murthy, M. Capps, B. D. Wagner, M. Alsaker, R. Deterding, S. D. Sagel and J. Hoppe, Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis, Physiol. Meas., 39 (2018), 045008. doi: 10.1088/1361-6579/aab8c4.  Google Scholar

[50]

L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Experimental mathematics: Computational issues in nonlinear science (Los Alamos, NM, 1991), Physica D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[51]

J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Applied Computational Geometry Towards Geometric Engineering, (eds. M. C. Lin and D. Manocha), Springer, Berlin, Heidelberg, (1996), 203–222. Google Scholar

[52]

S. SiltanenJ. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse probl., 16 (2000), 681-699.  doi: 10.1088/0266-5611/16/3/310.  Google Scholar

[53]

M. SoleimaniC. E. Powell and N. Polydorides, Improving the forward solver for the complete electrode model in EIT using algebraic multigrid, IEEE Trans. Med. Imag., 24 (2005), 577-583.  doi: 10.1109/TMI.2005.843741.  Google Scholar

[54]

E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.  doi: 10.1137/0152060.  Google Scholar

[55]

J. N. TehraniA. McEwanC. Jin and A. Van Schaik, L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve), Appl. Math. Model., 36 (2012), 1095-1105.  doi: 10.1016/j.apm.2011.07.055.  Google Scholar

[56]

C. J. Trepte, C. R. Phillips, J. Solà, A. Adler, S. A. Haas, M. Rapin, S. H. Böhm and D. A. Reuter, Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury, Crit. Care, 20 (2016), Article 18. doi: 10.1186/s13054-015-1173-5.  Google Scholar

[57]

P. M. van den BergA. L. Van Broekhoven and A. Abubakar, Extended contrast source inversion, Inverse Probl., 15 (1999), 1325-1344.  doi: 10.1088/0266-5611/15/5/315.  Google Scholar

[58]

P. M. van den Berg, A. Abubakar and J. T. Fokkema, Multiplicative regularization for contrast profile inversion, Radio Sci., 38 (2003), 23-1–23-10. Google Scholar

[59]

M. VauhkonenD. VadaszP. A. KarjalainenE. Somersalo and J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE Trans. Med. Imag., 17 (1998), 285-293.  doi: 10.1109/42.700740.  Google Scholar

[60]

P. J. VauhkonenM. VauhkonenT. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), 1150-1160.  doi: 10.1109/10.784147.  Google Scholar

[61]

J. A. VictorinoJ. B. BorgesV. N. OkamotoG. F. J. MatosM. R. TucciM. P. R. CaramezH. TanakaF. S. SipmannD. C. B. SantosC. S. V. BarbasC. R. R. Carvalho and M. B. P. Amato, Imbalances in regional lung ventilation: A validation study on electrical impedance tomography, Am. J. Respir. Crit. Care Med., 169 (2004), 791-800.   Google Scholar

[62]

Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.  Google Scholar

[63]

E. J. WooP. HuaJ. G. Webster and W. J. Tompkins, A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography, IEEE Trans. Med. Imag., 12 (1993), 137-146.  doi: 10.1109/42.232242.  Google Scholar

[64]

Y. YangH. Wu and J. Jia, Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation, IEEE Sens. J., 17 (2017), 5589-5598.  doi: 10.1109/JSEN.2017.2728179.  Google Scholar

[65]

T. J. YorkeyJ. G. Webster and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Eng., BME-34 (1987), 843-852.  doi: 10.1109/TBME.1987.326032.  Google Scholar

[66]

A. Zakaria and J. LoVetri, Application of multiplicative regularization to the finite-element contrast source inversion method, IEEE Trans. Antenn. Propag., 59 (2011), 3495-3498.  doi: 10.1109/TAP.2011.2161564.  Google Scholar

[67]

A. ZakariaI. Jefirey and J. LoVetri, Full-vectorial parallel finite-element contrast source inversion method, Prog. Electromagn. Res., 142 (2013), 463-483.  doi: 10.2528/PIER13080706.  Google Scholar

[68]

L. Zhou, B. Harrach and J. K. Seo, Monotonicity-based electrical impedance tomography for lung imaging, Inverse Probl., 34 (2018), 045005, 25pp. doi: 10.1088/1361-6420/aaaf84.  Google Scholar

show all references

References:
[1]

A. AbbasiB. V. Vahdat and G. E. Fakhim, An inverse solution for 2D electrical impedance tomography based on electrical properties of material blocks, Journal of Applied Sciences, 9 (2009), 1962-1967.  doi: 10.3923/jas.2009.1962.1967.  Google Scholar

[2]

A. Abbasi and B. V. Vahdat, A non-iterative linear inverse solution for the block approach in EIT, Journal of Computational Science, 1 (2010), 190-196.  doi: 10.1016/j.jocs.2010.09.001.  Google Scholar

[3]

A. Adler and R. Guardo, Electrical impedance tomography: Regularized imaging and contrast detection, IEEE Trans. Med. Imag., 15 (1996), 170-179.  doi: 10.1109/42.491418.  Google Scholar

[4]

A. Adler et al., GREIT: A unified approach to 2D linear EIT reconstruction of lung images, Physiol. Meas., 30 (2009), S35. Google Scholar

[5]

M. Alsaker and J. L. Mueller, A D-bar algorithm with a priori information for 2-dimensional electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 1619-1654.  doi: 10.1137/15M1020137.  Google Scholar

[6]

M. AlsakerS. J. Hamilton and A. Hauptmann, A direct D-bar method for partial boundary data electrical impedance tomography with a priori information, Inverse Probl. Imag., 11 (2017), 427-454.  doi: 10.3934/ipi.2017020.  Google Scholar

[7]

A. BorsicB. M. GrahamA. Adler and W. R. B. Lionheart, In vivo impedance imaging with total variation regularization, IEEE Trans. Med. Imag., 29 (2010), 44-54.  doi: 10.1109/TMI.2009.2022540.  Google Scholar

[8]

X. Chen, Ill-posed problems and regularization, Computational Methods for Electromagnetic Inverse Scattering, John Wiley & Sons, (2018), 281–289. doi: 10.1002/9781119311997.app1.  Google Scholar

[9]

D. IsaacsonM. CheneyJ. C. NewellS. Simske and J. Goble, NOSER: An algorithm for solving the inverse conductivity problem, Int. J. Imag. Syst. Technol., 2 (1990), 66-75.   Google Scholar

[10]

M. CheneyD. Isaacson and J. C. Newell, Electrical impedance tomography, SIAM Rev., 41 (1999), 85-101.  doi: 10.1137/S0036144598333613.  Google Scholar

[11]

K.-S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Trans. Biomed. Eng., 36 (1989), 918-924.   Google Scholar

[12]

E. T. ChungT. F. Chan and X. C. Tai, Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phy., 205 (2005), 357-372.  doi: 10.1016/j.jcp.2004.11.022.  Google Scholar

[13]

C. Cohen-BacrieY. Goussard and R. Guardo, Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint, IEEE Trans. Med. Imag., 16 (1997), 562-571.   Google Scholar

[14]

E. L. V. Costa, J. B. Borges, A. Melo, F. Suarez-Sipmann, C. Toufen, S. H. Bohm and M. B. P. Amato, Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography, Intens. Care Med., 2012,165–170. doi: 10.1007/978-3-642-28270-6_34.  Google Scholar

[15]

K. Crane, Discrete Differential Geometry: An Applied Introduction, Carnegie Mellon University, Pittsburgh, USA, 2018. Google Scholar

[16]

D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography, Inverse Probl., 10 (1994), 317-334.  doi: 10.1088/0266-5611/10/2/008.  Google Scholar

[17]

G. FranchineauN. BrechotG. LebretonG. HekimianA. NieszkowskaJ. TrouilletP. LeprinceJ. ChastreC. LuytA. Combes and M. Schmidt, Bedside contribution of electrical impedance tomography to setting positive end-expiratory pressure for extracorporeal membrane oxygenation-treated patients with severe acute respiratory distress syndrome, Am. J. Respir. Crit. Care Med., 196 (2017), 447-457.  doi: 10.1164/rccm.201605-1055OC.  Google Scholar

[18]

I. FrerichsJ. HinzP. HerrmannG. WeisserG. HahnM. Quintel and G. Hellige, Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging, IEEE Trans. Med. Imag., 21 (2002), 646-652.  doi: 10.1109/TMI.2002.800585.  Google Scholar

[19]

I. FrerichsZ. ZhaoT. BecherP. ZabelN. Weiler and B. Vogt, Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma, Physiol. Meas., 37 (2016), 698-712.  doi: 10.1088/0967-3334/37/6/698.  Google Scholar

[20]

N. P. Galatsanos and A. K. Katsaggelos, Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation, IEEE Trans. Image Process., 1 (1992), 322-336.  doi: 10.1109/83.148606.  Google Scholar

[21]

B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Probl., 23 (2007), 2159-2170.  doi: 10.1088/0266-5611/23/5/020.  Google Scholar

[22]

M. GehreT. KluthA. LipponenB. JinA. SeppänenJ. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: An experimental evaluation, J. Comput. Appl. Math., 236 (2012), 2126-2136.  doi: 10.1016/j.cam.2011.09.035.  Google Scholar

[23]

G. H. GolubM. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.  doi: 10.1080/00401706.1979.10489751.  Google Scholar

[24]

G. GonzálezJ. M. J. HuttunenV. KolehmainenA. Seppänen and M. Vauhkonen, Experimental evaluation of 3D electrical impedance tomography with total variation prior, Inverse Probl. Sci. En., 24 (2016), 1411-1431.   Google Scholar

[25]

G. GonzálezV. Kolehmainen and A. Seppänen, Isotropic and anisotropic total variation regularization in electrical impedance tomography, Comput. Math. Appl., 74 (2017), 564-576.  doi: 10.1016/j.camwa.2017.05.004.  Google Scholar

[26]

T. M. Habashy and A. Abubakar, A general framework for constraint minimization for the inversion of electromagnetic measurements, Prog. Electromagn. Res., 46 (2004), 265-312.  doi: 10.2528/PIER03100702.  Google Scholar

[27]

G. Hahn, A. Just, T. Dudykevych, I. Frerichs, J. Hinz, M. Quintel and G. Hellige, Imaging pathologic pulmonary air and fluid accumulation by functional and absolute EIT, Physiol. Meas., 27 (2006), S187–S198. doi: 10.1088/0967-3334/27/5/S16.  Google Scholar

[28]

S. J. HamiltonJ. M. ReyesS. Siltanen and X. Zhang, A hybrid segmentation and D-bar method for electrical impedance tomography, SIAM J. Imaging Sci., 9 (2016), 770-793.  doi: 10.1137/15M1025992.  Google Scholar

[29]

S. J. HamiltonJ. L. Mueller and M. Alsaker, Incorporating a spatial prior into nonlinear D-bar EIT imaging for complex admittivities, IEEE Trans. Med. Imag., 36 (2017), 457-466.  doi: 10.1109/TMI.2016.2613511.  Google Scholar

[30]

M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Special section on imaging, Inverse probl., 19 (2003), S65–S90. doi: 10.1088/0266-5611/19/6/055.  Google Scholar

[31]

P. C. Hansen, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev., 34 (1992), 561-580.  doi: 10.1137/1034115.  Google Scholar

[32]

B. Harrach, Recent progress on the factorization method for electrical impedance tomography, Comput. Math. Methods Med., 2013 (2013), Art. ID 425184, 8 pp. doi: 10.1155/2013/425184.  Google Scholar

[33]

A. Hauptmann, M. Santacesaria and S. Siltanen, Direct inversion from partial-boundary data in electrical impedance tomography, Inverse Probl., 33 (2017), 025009, 26pp. doi: 10.1088/1361-6420/33/2/025009.  Google Scholar

[34]

A. Hauptmann, V. Kolehmainen, N. M. Mach, T. Savolainen, A. Seppänen and S. Siltanen, Open 2D electrical impedance tomography data archive, preprint, arXiv: 1704.01178. Google Scholar

[35]

A. N. Hirani, Discrete Exterior Calculus, Ph.D thesis, California Institute of Technology, 2003.  Google Scholar

[36]

B. JinT. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization, Int. J. Numer. Meth. Eng., 89 (2012), 337-353.  doi: 10.1002/nme.3247.  Google Scholar

[37]

K. KnudsenM. LassasJ. L. Mueller and S. Siltanen, Regularized D-bar method for the inverse conductivity problem, Inverse Probl. Imag., 3 (2009), 599-624.  doi: 10.3934/ipi.2009.3.599.  Google Scholar

[38]

P. W. A. KunstA. V. NoordegraafO. S. HoekstraP. E. Postmus and P. M. J. M. De Vries, Ventilation and perfusion imaging by electrical impedance tomography: A comparison with radionuclide scanning, Physiol. Meas., 19 (1998), 481-490.  doi: 10.1088/0967-3334/19/4/003.  Google Scholar

[39]

K. LeeE. J. Woo and J. K. Seo, A fidelity-embedded regularization method for robust electrical impedance tomography, IEEE Trans. Med. Imag., 37 (2018), 1970-1977.  doi: 10.1109/TMI.2017.2762741.  Google Scholar

[40]

S. LehmannS. LeonhardtC. NgoL. BergmannS. SchradingK. HeimannN. Wagner and K. Tenbrock, Electrical impedance tomography as possible guidance for individual positioning of patients with multiple lung injury, Clin. Respir. J., 12 (2018), 68-75.  doi: 10.1111/crj.12481.  Google Scholar

[41]

D. LiuV. KolehmainenS. SiltanenA. M. Laukkanen and A. Seppänen, Nonlinear difference imaging approach to three-dimensional electrical impedance tomography in the presence of geometric modeling errors, IEEE Trans. Biomed. Eng., 63 (2016), 1956-1965.  doi: 10.1109/TBME.2015.2509508.  Google Scholar

[42]

D. LiuA. K. Khambampati and J. Du, A parametric level set method for electrical impedance tomography, IEEE Trans. Med. Imag., 37 (2018), 451-460.  doi: 10.1109/TMI.2017.2756078.  Google Scholar

[43]

D. LiuD. Smyl and J. Du, A parametric level set-based approach to difference imaging in electrical impedance tomography, IEEE Trans. Med. Imag., 38 (2019), 145-155.  doi: 10.1109/TMI.2018.2857839.  Google Scholar

[44]

S. LiuJ. JiaY. D. Zhang and Y. Yang, Image reconstruction in electrical impedance tomography based on structure-aware sparse Bayesian learning, IEEE Trans. Med. Imag., 37 (2018), 2090-2102.  doi: 10.1109/TMI.2018.2816739.  Google Scholar

[45]

M. B. MazzoniA. PerriA. M. PlebaniS. FerrariG. AmelioA. RocchiD. ConsonniG. P. Milani and E. F. Fossali, Electrical impedance tomography in children with community acquired pneumonia: Preliminary data, Resp. Med., 130 (2017), 9-12.  doi: 10.1016/j.rmed.2017.07.001.  Google Scholar

[46]

M. Meyer, M. Desbrun, P. Schröder and A. H. Barr, Discrete differential-geometry operators for triangulated 2-manifolds, Visualization and Mathematics III, Math. Vis., Springer, Berlin, (2003), 35–57.  Google Scholar

[47]

J. L. MuellerS. Siltanen and D. Isaacson, A direct reconstruction algorithm for electrical impedance tomography, IEEE Trans. Med. Imag., 21 (2002), 555-559.  doi: 10.1109/TMI.2002.800574.  Google Scholar

[48]

J. L. Mueller, P. Muller, M. Mellenthin, R. Murthy, M. Capps, M. Alsaker, R. Deterding, S. D. Sagel and E. DeBoer, Estimating regions of air trapping from electrical impedance tomography data, Physiol. Meas., 39 (2018), 05NT01. doi: 10.1088/1361-6579/aac295.  Google Scholar

[49]

P. A. Muller, J. L. Mueller, M. Mellenthin, R. Murthy, M. Capps, B. D. Wagner, M. Alsaker, R. Deterding, S. D. Sagel and J. Hoppe, Evaluation of surrogate measures of pulmonary function derived from electrical impedance tomography data in children with cystic fibrosis, Physiol. Meas., 39 (2018), 045008. doi: 10.1088/1361-6579/aab8c4.  Google Scholar

[50]

L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Experimental mathematics: Computational issues in nonlinear science (Los Alamos, NM, 1991), Physica D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[51]

J. R. Shewchuk, Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator, Applied Computational Geometry Towards Geometric Engineering, (eds. M. C. Lin and D. Manocha), Springer, Berlin, Heidelberg, (1996), 203–222. Google Scholar

[52]

S. SiltanenJ. Mueller and D. Isaacson, An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem, Inverse probl., 16 (2000), 681-699.  doi: 10.1088/0266-5611/16/3/310.  Google Scholar

[53]

M. SoleimaniC. E. Powell and N. Polydorides, Improving the forward solver for the complete electrode model in EIT using algebraic multigrid, IEEE Trans. Med. Imag., 24 (2005), 577-583.  doi: 10.1109/TMI.2005.843741.  Google Scholar

[54]

E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.  doi: 10.1137/0152060.  Google Scholar

[55]

J. N. TehraniA. McEwanC. Jin and A. Van Schaik, L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve), Appl. Math. Model., 36 (2012), 1095-1105.  doi: 10.1016/j.apm.2011.07.055.  Google Scholar

[56]

C. J. Trepte, C. R. Phillips, J. Solà, A. Adler, S. A. Haas, M. Rapin, S. H. Böhm and D. A. Reuter, Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury, Crit. Care, 20 (2016), Article 18. doi: 10.1186/s13054-015-1173-5.  Google Scholar

[57]

P. M. van den BergA. L. Van Broekhoven and A. Abubakar, Extended contrast source inversion, Inverse Probl., 15 (1999), 1325-1344.  doi: 10.1088/0266-5611/15/5/315.  Google Scholar

[58]

P. M. van den Berg, A. Abubakar and J. T. Fokkema, Multiplicative regularization for contrast profile inversion, Radio Sci., 38 (2003), 23-1–23-10. Google Scholar

[59]

M. VauhkonenD. VadaszP. A. KarjalainenE. Somersalo and J. P. Kaipio, Tikhonov regularization and prior information in electrical impedance tomography, IEEE Trans. Med. Imag., 17 (1998), 285-293.  doi: 10.1109/42.700740.  Google Scholar

[60]

P. J. VauhkonenM. VauhkonenT. Savolainen and J. P. Kaipio, Three-dimensional electrical impedance tomography based on the complete electrode model, IEEE Trans. Biomed. Eng., 46 (1999), 1150-1160.  doi: 10.1109/10.784147.  Google Scholar

[61]

J. A. VictorinoJ. B. BorgesV. N. OkamotoG. F. J. MatosM. R. TucciM. P. R. CaramezH. TanakaF. S. SipmannD. C. B. SantosC. S. V. BarbasC. R. R. Carvalho and M. B. P. Amato, Imbalances in regional lung ventilation: A validation study on electrical impedance tomography, Am. J. Respir. Crit. Care Med., 169 (2004), 791-800.   Google Scholar

[62]

Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.  Google Scholar

[63]

E. J. WooP. HuaJ. G. Webster and W. J. Tompkins, A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography, IEEE Trans. Med. Imag., 12 (1993), 137-146.  doi: 10.1109/42.232242.  Google Scholar

[64]

Y. YangH. Wu and J. Jia, Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation, IEEE Sens. J., 17 (2017), 5589-5598.  doi: 10.1109/JSEN.2017.2728179.  Google Scholar

[65]

T. J. YorkeyJ. G. Webster and W. J. Tompkins, Comparing reconstruction algorithms for electrical impedance tomography, IEEE Trans. Biomed. Eng., BME-34 (1987), 843-852.  doi: 10.1109/TBME.1987.326032.  Google Scholar

[66]

A. Zakaria and J. LoVetri, Application of multiplicative regularization to the finite-element contrast source inversion method, IEEE Trans. Antenn. Propag., 59 (2011), 3495-3498.  doi: 10.1109/TAP.2011.2161564.  Google Scholar

[67]

A. ZakariaI. Jefirey and J. LoVetri, Full-vectorial parallel finite-element contrast source inversion method, Prog. Electromagn. Res., 142 (2013), 463-483.  doi: 10.2528/PIER13080706.  Google Scholar

[68]

L. Zhou, B. Harrach and J. K. Seo, Monotonicity-based electrical impedance tomography for lung imaging, Inverse Probl., 34 (2018), 045005, 25pp. doi: 10.1088/1361-6420/aaaf84.  Google Scholar

Figure 1.  Simplices and their circumcentric duals in 2D space. The Greek letter $ \tau $ is used to represent the simplex. The superscript of a simplex is its dimension. In the diagrams of the duals of the simplices, the notation '$ \star $' is the star duality operator, and the solid points inside the triangles are their circumcenters
Figure 2.  An illustration of the computation of the discrete gradient at the dual of Triangle $ \tau^2 $. The three vertices of Triangle $ \tau^2 $ are represented by $ \tau_1^0 $, $ \tau_2^0 $, and $ \tau_3^0 $. Here we choose Vertex $ \tau_3^0 $ as the reference vertex $ v $
Figure 3.  A 1-ring of a vertex $ \tau^0 $ to illustrate the computation of the discrete divergence at $ \tau^0 $. The shaded region is the Voronoi region of Vertex $ \tau^0 $. The edges sharing Vertex $ \tau^0 $ are pointing outwards
Figure 4.  A 1-ring of a vertex $ \tau^0 $ to illustrate the computation of the discrete Laplacian at $ \tau^0 $. All the information needed is the conductivity values at Vertex $ \tau^0 $ and the vertices adjacent to it, as well as the geometry of the mesh. The shaded region is the Voronoi region of Vertex $ \tau^0 $
Figure 5.  Two-dimensional thoracic numerical model and the inversion mesh. (a) The model. Conductivity settings: lungs: 0.05 S/m, heart: 0.2 S/m, background: 0.15 S/m. Sixteen electrodes are around the boundary (shown as the bolded line segments). (b) An arbitrary mesh used for inversion
Figure 6.  Reconstruction results of the model shown in Figure 5(a) using two different kinds of regularization schemes: multiplicative weighted $ L2 $-norm regularization (MR-WL2, first row) and additive TV regularization (AR-TV, second row). The first, second, third, and fourth columns correspond to the reconstruction results using data with 0%, 1%, 3%, and 5% noise, respectively. All the reconstructions are at the 12th iterations
Figure 7.  Comparison of convergence curves for the multiplicative weighted $ L $2-norm regularization (MR-WL2) and the additive TV regularization (AR-TV). The curves correspond to the numerical example shown in Figure 6
Figure 8.  Two-dimensional thoracic numerical model with pleural effusion in the dorsal part of the right lung. The conductivity settings are the same as those in the model shown in Figure 5(a) except that the conductivity of the pleural effusion area is 0.2 S/m
Figure 9.  Reconstruction results of the model shown in Figure 8 using two different kinds of regularization schemes: multiplicative weighted $ L2 $-norm regularization (MR-WL2, first row) and additive TV regularization (AR-TV, second row). The first, second, third, and fourth columns correspond to the reconstruction results using data with 0%, 1%, 2%, and 3% noise, respectively. All the reconstructions are at the 12th iterations
Figure 10.  Reconstruction results using measured data. The first column shows the photos of the phantoms. Phantom 2.2: two plastic inclusions; Phantom 3.1: three plastic inclusions; Phantom 4.1: one metallic (circular, hollow) and one plastic (triangular) inclusions; Phantom 5.2: two metallic (circular, hollow) and one plastic (triangular) inclusions. The second column shows the reconstruction results corresponding to each phantom using the multiplicative weighted $ L $2-norm regularization (MR-WL2). The third column shows the reconstruction results corresponding to each phantom using the additive TV regularization (AR-TV)
Figure 11.  Three-dimensional thoracic numerical model and the inversion mesh. The tetrahedral elements in the upper part of the meshes are masked in order to show the interior structures. (a) The model. Conductivity settings: lungs: 0.05 S/m, heart: 0.2 S/m, background: 0.15 S/m. Sixteen circular electrodes are around the same height of the boundary. (b) An arbitrary mesh used for inversion
Figure 12.  Reconstructed images on the electrode plane using the multiplicative weighted $ L $2-norm regularization and synthetic data from the 3D thorax model shown in Figure 11(a)
Table 1.  Structural similarity (SSIM) index calculated for the reconstruction results in Section 5 (Figure 6 and 9)
2D numerical example 1 2D numerical example 2
Noise level 0% 1% 3% 5% 0% 1% 2% 3%
MR-WL2$ ^* $ 0.9532 0.9007 0.8845 0.8718 0.9571 0.9107 0.8894 0.8807
AR-TV$ ^\dagger $ 0.9591 0.8954 0.8755 0.8530 0.9581 0.9005 0.8805 0.8636
* Multiplicative weighted L2-norm regularization
Additive total variation regularization
2D numerical example 1 2D numerical example 2
Noise level 0% 1% 3% 5% 0% 1% 2% 3%
MR-WL2$ ^* $ 0.9532 0.9007 0.8845 0.8718 0.9571 0.9107 0.8894 0.8807
AR-TV$ ^\dagger $ 0.9591 0.8954 0.8755 0.8530 0.9581 0.9005 0.8805 0.8636
* Multiplicative weighted L2-norm regularization
Additive total variation regularization
Table 2.  Parameter values of the additive TV regularization in the reconstructions using the tank data
Phantom 2.2 Phantom 3.1 Phantom 4.1 Phantom 5.2
$ \alpha $ $ 1\times10^{-3} $ $ 1\times10^{-3} $ $ 1\times10^{-3} $ $ 1\times10^{-3} $
$ \beta $ $ 1\times10^{-24} $ $ 1\times10^{-23} $ $ 1\times10^{-20} $ $ 1\times10^{-18} $
Phantom 2.2 Phantom 3.1 Phantom 4.1 Phantom 5.2
$ \alpha $ $ 1\times10^{-3} $ $ 1\times10^{-3} $ $ 1\times10^{-3} $ $ 1\times10^{-3} $
$ \beta $ $ 1\times10^{-24} $ $ 1\times10^{-23} $ $ 1\times10^{-20} $ $ 1\times10^{-18} $
[1]

Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561

[2]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems & Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[3]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[4]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems & Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[5]

Raymond H. Chan, Haixia Liang, Suhua Wei, Mila Nikolova, Xue-Cheng Tai. High-order total variation regularization approach for axially symmetric object tomography from a single radiograph. Inverse Problems & Imaging, 2015, 9 (1) : 55-77. doi: 10.3934/ipi.2015.9.55

[6]

Ke Chen, Yiqiu Dong, Michael Hintermüller. A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Problems & Imaging, 2011, 5 (2) : 323-339. doi: 10.3934/ipi.2011.5.323

[7]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems & Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[8]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems & Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[9]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems & Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417

[10]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems & Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[11]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems & Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[12]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[13]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems & Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[14]

Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127

[15]

Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems & Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399

[16]

Zhong-Ci Shi, Xuejun Xu, Zhimin Zhang. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 163-182. doi: 10.3934/dcdsb.2008.9.163

[17]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems & Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[18]

Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems & Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565

[19]

Juan Carlos De los Reyes, Estefanía Loayza-Romero. Total generalized variation regularization in data assimilation for Burgers' equation. Inverse Problems & Imaging, 2019, 13 (4) : 755-786. doi: 10.3934/ipi.2019035

[20]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

2018 Impact Factor: 1.469

Article outline

Figures and Tables

[Back to Top]