-
Previous Article
A parallel domain decomposition algorithm for large scale image denoising
- IPI Home
- This Issue
-
Next Article
Robust parameter estimation of chaotic systems
Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary
1. | Department of Mathematics, Colorado State University, 101 Weber Building, Fort Collins, CO 80523-1874, USA |
2. | Department of Mathematical Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153, Japan |
3. | Honorary Member of Academy of Romanian Scientists, Splaiul Independentei Street, no 54, 050094 Bucharest Romania |
4. | Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation |
In this paper, we establish conditional stability estimates for two inverse problems of determining metrics in two dimensional Laplace-Beltrami operators. As data, in the first inverse problem we adopt spectral data on an arbitrarily fixed subboundary, while in the second, we choose the Dirichlet-to-Neumann map limited on an arbitrarily fixed subboundary. The conditional stability estimates for the two inverse problems are stated as follows. If the difference between spectral data or Dirichlet-to-Neumann maps related to two metrics $ {\bf{g}}_1 $ and $ {\bf{g}}_2 $ is small, then $ {\bf{g}}_1 $ and $ {\bf{g}}_2 $ are close in $ L^2(\Omega) $ modulo a suitable diffeomorphism within a priori bounds of $ {\bf{g}}_1 $ and $ {\bf{g}}_2 $. Both stability estimates are of the same double logarithmic rate.
References:
[1] |
G. Alessandrini, L. Rondi, E. Rosset and S. Vessela, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004. |
[2] |
K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, 48. Princeton University Press, Princeton, NJ, 2009. |
[3] |
M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC method), Inverse Problems, 13 (1997), R1–R45.
doi: 10.1088/0266-5611/13/5/002. |
[4] |
M. I. Belishev and Y. V. Kurylev,
To the reconstruction of a Riemanninan manifold via its spectral data (BC-method), Comm. Partial Differential Equations, 17 (1992), 767-804.
doi: 10.1080/03605309208820863. |
[5] |
M. Bellassoued, M. Choulli and M. Yamamoto,
Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem, J. Differential Equations, 247 (2009), 465-494.
doi: 10.1016/j.jde.2009.03.024. |
[6] |
M. Bellassoued, M. Choulli and M. Yamamoto,
Stability estimate for a multidimensional inverse spectral problem with partial spectral data, J. Math. Anal. Appl., 378 (2011), 184-197.
doi: 10.1016/j.jmaa.2011.01.007. |
[7] |
M. Bellasoued and D. Dos Santos Ferreira,
Stability estimates for the anisotropic wave equations from the Dirichlet-to-Neumann map, Inverse Probl. Imaging, 5 (2011), 745-773.
doi: 10.3934/ipi.2011.5.745. |
[8] |
E. Blåsten, O. Y. Imanuvilov and M. Yamamoto,
Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials, Inverse Probl. Imaging, 9 (2015), 709-723.
doi: 10.3934/ipi.2015.9.709. |
[9] |
M. Choulli and P. Stefanov,
Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data, Comm. Partial Differential Equations, 38 (2013), 455-476.
doi: 10.1080/03605302.2012.747538. |
[10] |
L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1998.
doi: 10.1090/gsm/019. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[12] |
R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, Second edition, Graduate Studies in Mathematics, 40. Amer. Math. Soc., Providence, RI, 2002. |
[13] |
O. Y. Imanuvilov,
Controllability of parabolic equations, Math. Sb., 186 (1995), 879-900.
doi: 10.1070/SM1995v186n06ABEH000047. |
[14] |
O. Y. Imanuvilov, J. P. Puel and M. Yamamoto,
Carleman estimate for parabolic equations with nonhomogeneous boundary conditions, Chin. Ann. Math., 30 (2009), 333-378.
doi: 10.1007/s11401-008-0280-x. |
[15] |
O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto,
Partial Cauchy data for general second order operators in two dimensions, Publ. Res. Inst. Math. Sci., 48 (2012), 971-1055.
doi: 10.2977/PRIMS/94. |
[16] |
O. Y. Imanuvilov and M. Yamamoto,
Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries, Milan J. Math., 81 (2013), 187-258.
doi: 10.1007/s00032-013-0205-3. |
[17] |
H. Isozaki,
Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991), 743-753.
doi: 10.1215/kjm/1250519727. |
[18] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123. Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220. |
[19] |
Y. Kurylev, M. Lassas and R. Weder,
Multidimensional Borg-Levinson theorem, Inverse Problems, 21 (2005), 1685-1696.
doi: 10.1088/0266-5611/21/5/011. |
[20] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, Berlin-New York-Heidelberg, 1972. |
[21] |
N. Mandache,
Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.
doi: 10.1088/0266-5611/17/5/313. |
[22] |
C. Montalto,
Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to-Neumann map, Comm. Partial Differential Equations, 39 (2014), 120-145.
doi: 10.1080/03605302.2013.843429. |
[23] |
A. Nachman, J. Sylvester and G. Uhlmann,
An $n$-dimensional Borg-Levinson theorem, Comm. Math. Phys., 115 (1988), 595-605.
doi: 10.1007/BF01224129. |
[24] |
R. G. Novikov,
A multidimensional inverse spectral problem for the equation $-\Delta \psi + (v(x)-Eu(x))\psi = 0$, Functional Analysis and its Applications, 22 (1988), 263-272.
doi: 10.1007/BF01077418. |
[25] |
R. G. Novikov and M. Santacesaria,
A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions, J. Inverse Ill-Posed Probl., 18 (2010), 765-785.
doi: 10.1515/JIIP.2011.003. |
[26] |
R. G. Novikov and M. Santacesaria,
Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions, Bull. Sci. Math., 135 (2011), 421-434.
doi: 10.1016/j.bulsci.2011.04.007. |
[27] |
L. Päivärinta and V. Serov,
An $n$-dimensional Borg-Levinson theorem for singular potentials, Adv. in Appl. Math., 29 (2002), 509-520.
doi: 10.1016/S0196-8858(02)00027-1. |
[28] |
C. Pommeranke, Boundary Behavior of Conformal Mappings, Grundlehren der Mathematischen Wissenschaften, Band 299. Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-02770-7. |
[29] |
M. Santacesaria,
New global stability estimates for the Calderón problem in two dimensions, J. Inst. Math. Jussieu, 12 (2013), 553-569.
doi: 10.1017/S147474801200076X. |
[30] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. |
[31] |
J. Sylvester,
An anisotropic inverse boundary value problem, Communications on Pure and Applied Mathematics, 43 (1990), 201-232.
doi: 10.1002/cpa.3160430203. |
[32] |
I. N. Vekua, Generalized Analytic Functions, Pergamon Press, London-Paris-Frankfurt, Addison-Wesley Publishing Co., Inc., Reading, Mass. 1962. |
show all references
References:
[1] |
G. Alessandrini, L. Rondi, E. Rosset and S. Vessela, The stability for the Cauchy problem for elliptic equations, Inverse Problems, 25 (2009), 123004. |
[2] |
K. Astala, T. Iwaniec and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mathematical Series, 48. Princeton University Press, Princeton, NJ, 2009. |
[3] |
M. I. Belishev, Boundary control in reconstruction of manifolds and metrics (the BC method), Inverse Problems, 13 (1997), R1–R45.
doi: 10.1088/0266-5611/13/5/002. |
[4] |
M. I. Belishev and Y. V. Kurylev,
To the reconstruction of a Riemanninan manifold via its spectral data (BC-method), Comm. Partial Differential Equations, 17 (1992), 767-804.
doi: 10.1080/03605309208820863. |
[5] |
M. Bellassoued, M. Choulli and M. Yamamoto,
Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem, J. Differential Equations, 247 (2009), 465-494.
doi: 10.1016/j.jde.2009.03.024. |
[6] |
M. Bellassoued, M. Choulli and M. Yamamoto,
Stability estimate for a multidimensional inverse spectral problem with partial spectral data, J. Math. Anal. Appl., 378 (2011), 184-197.
doi: 10.1016/j.jmaa.2011.01.007. |
[7] |
M. Bellasoued and D. Dos Santos Ferreira,
Stability estimates for the anisotropic wave equations from the Dirichlet-to-Neumann map, Inverse Probl. Imaging, 5 (2011), 745-773.
doi: 10.3934/ipi.2011.5.745. |
[8] |
E. Blåsten, O. Y. Imanuvilov and M. Yamamoto,
Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials, Inverse Probl. Imaging, 9 (2015), 709-723.
doi: 10.3934/ipi.2015.9.709. |
[9] |
M. Choulli and P. Stefanov,
Stability for the multi-dimensional Borg-Levinson theorem with partial spectral data, Comm. Partial Differential Equations, 38 (2013), 455-476.
doi: 10.1080/03605302.2012.747538. |
[10] |
L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Providence, RI, 1998.
doi: 10.1090/gsm/019. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. |
[12] |
R. E. Greene and S. G. Krantz, Function Theory of One Complex Variable, Second edition, Graduate Studies in Mathematics, 40. Amer. Math. Soc., Providence, RI, 2002. |
[13] |
O. Y. Imanuvilov,
Controllability of parabolic equations, Math. Sb., 186 (1995), 879-900.
doi: 10.1070/SM1995v186n06ABEH000047. |
[14] |
O. Y. Imanuvilov, J. P. Puel and M. Yamamoto,
Carleman estimate for parabolic equations with nonhomogeneous boundary conditions, Chin. Ann. Math., 30 (2009), 333-378.
doi: 10.1007/s11401-008-0280-x. |
[15] |
O. Y. Imanuvilov, G. Uhlmann and M. Yamamoto,
Partial Cauchy data for general second order operators in two dimensions, Publ. Res. Inst. Math. Sci., 48 (2012), 971-1055.
doi: 10.2977/PRIMS/94. |
[16] |
O. Y. Imanuvilov and M. Yamamoto,
Uniqueness for inverse boundary value problems by Dirichlet-to-Neumann map on subboundaries, Milan J. Math., 81 (2013), 187-258.
doi: 10.1007/s00032-013-0205-3. |
[17] |
H. Isozaki,
Some remarks on the multi-dimensional Borg-Levinson theorem, J. Math. Kyoto Univ., 31 (1991), 743-753.
doi: 10.1215/kjm/1250519727. |
[18] |
A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123. Chapman & Hall/CRC, Boca Raton, FL, 2001.
doi: 10.1201/9781420036220. |
[19] |
Y. Kurylev, M. Lassas and R. Weder,
Multidimensional Borg-Levinson theorem, Inverse Problems, 21 (2005), 1685-1696.
doi: 10.1088/0266-5611/21/5/011. |
[20] |
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, Berlin-New York-Heidelberg, 1972. |
[21] |
N. Mandache,
Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.
doi: 10.1088/0266-5611/17/5/313. |
[22] |
C. Montalto,
Stable determination of a simple metric, a covector field and a potential from the hyperbolic Dirichlet-to-Neumann map, Comm. Partial Differential Equations, 39 (2014), 120-145.
doi: 10.1080/03605302.2013.843429. |
[23] |
A. Nachman, J. Sylvester and G. Uhlmann,
An $n$-dimensional Borg-Levinson theorem, Comm. Math. Phys., 115 (1988), 595-605.
doi: 10.1007/BF01224129. |
[24] |
R. G. Novikov,
A multidimensional inverse spectral problem for the equation $-\Delta \psi + (v(x)-Eu(x))\psi = 0$, Functional Analysis and its Applications, 22 (1988), 263-272.
doi: 10.1007/BF01077418. |
[25] |
R. G. Novikov and M. Santacesaria,
A global stability estimate for the Gel'fand-Calderón inverse problem in two dimensions, J. Inverse Ill-Posed Probl., 18 (2010), 765-785.
doi: 10.1515/JIIP.2011.003. |
[26] |
R. G. Novikov and M. Santacesaria,
Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions, Bull. Sci. Math., 135 (2011), 421-434.
doi: 10.1016/j.bulsci.2011.04.007. |
[27] |
L. Päivärinta and V. Serov,
An $n$-dimensional Borg-Levinson theorem for singular potentials, Adv. in Appl. Math., 29 (2002), 509-520.
doi: 10.1016/S0196-8858(02)00027-1. |
[28] |
C. Pommeranke, Boundary Behavior of Conformal Mappings, Grundlehren der Mathematischen Wissenschaften, Band 299. Springer-Verlag, Berlin, 1992.
doi: 10.1007/978-3-662-02770-7. |
[29] |
M. Santacesaria,
New global stability estimates for the Calderón problem in two dimensions, J. Inst. Math. Jussieu, 12 (2013), 553-569.
doi: 10.1017/S147474801200076X. |
[30] |
E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. |
[31] |
J. Sylvester,
An anisotropic inverse boundary value problem, Communications on Pure and Applied Mathematics, 43 (1990), 201-232.
doi: 10.1002/cpa.3160430203. |
[32] |
I. N. Vekua, Generalized Analytic Functions, Pergamon Press, London-Paris-Frankfurt, Addison-Wesley Publishing Co., Inc., Reading, Mass. 1962. |
[1] |
Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745 |
[2] |
Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems and Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139 |
[3] |
Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete and Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033 |
[4] |
Mourad Bellassoued, Zouhour Rezig. Recovery of transversal metric tensor in the Schrödinger equation from the Dirichlet-to-Neumann map. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1061-1084. doi: 10.3934/dcdss.2021158 |
[5] |
Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631 |
[6] |
Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043 |
[7] |
Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201 |
[8] |
Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001 |
[9] |
Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221 |
[10] |
Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems and Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959 |
[11] |
Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks and Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483 |
[12] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Solutions of nonlinear nonhomogeneous Neumann and Dirichlet problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2889-2922. doi: 10.3934/cpaa.2013.12.2889 |
[13] |
Monique Dauge, Thomas Ourmières-Bonafos, Nicolas Raymond. Spectral asymptotics of the Dirichlet Laplacian in a conical layer. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1239-1258. doi: 10.3934/cpaa.2015.14.1239 |
[14] |
Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181 |
[15] |
Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205 |
[16] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[17] |
Wolfgang Arendt, Daniel Daners. Varying domains: Stability of the Dirichlet and the Poisson problem. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 21-39. doi: 10.3934/dcds.2008.21.21 |
[18] |
Plamen Stefanov, Gunther Uhlmann, Andras Vasy. On the stable recovery of a metric from the hyperbolic DN map with incomplete data. Inverse Problems and Imaging, 2016, 10 (4) : 1141-1147. doi: 10.3934/ipi.2016035 |
[19] |
Haitao Yang, Yibin Zhang. Boundary bubbling solutions for a planar elliptic problem with exponential Neumann data. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5467-5502. doi: 10.3934/dcds.2017238 |
[20] |
Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]