• Previous Article
    Unique determination of a transversely isotropic perturbation in a linearized inverse boundary value problem for elasticity
  • IPI Home
  • This Issue
  • Next Article
    A parallel domain decomposition algorithm for large scale image denoising
December  2019, 13(6): 1283-1307. doi: 10.3934/ipi.2019056

Microlocal analysis of Doppler synthetic aperture radar

1. 

School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA

2. 

Department of Mathematics and Statistics and Health Research Institute, University of Limerick, Limerick, V94 T9PX, Ireland

3. 

Department of Mathematics, University of Rochester, Rochester, NY, 14627, USA

* Corresponding author: Raluca Felea

Received  November 2018 Revised  May 2019 Published  October 2019

We study the existence and suppression of artifacts for a Doppler-based Synthetic Aperture Radar (DSAR) system. The idealized air- or space-borne system transmits a continuous wave at a fixed frequency and a co-located receiver measures the resulting scattered waves; a windowed Fourier transform then converts the raw data into a function of two variables: slow time and frequency. Under simplifying assumptions, we analyze the linearized forward scattering map and the feasibility of inverting it via filtered backprojection, using techniques of microlocal analysis which robustly describe how sharp features in the target appear in the data. For DSAR with a straight flight path, there is, as with conventional SAR, a left-right ambiguity artifact in the DSAR image, which can be avoided via beam forming to the left or right. For a circular flight path, the artifact has a more complicated structure, but filtering out echoes coming from straight ahead or behind the transceiver, as well as those outside a critical range, produces an artifact-free image. We show that these results are qualitatively robust; although initially derived under an approximation widely used for range-based SAR, they are either structurally stable or robust with respect to a more accurate model.

Citation: Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems & Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056
References:
[1]

G. AmbartsoumianR. FeleaV. P. KrishnanC. Nolan and E. T. Quinto, A class of singular Fourier integral operators in synthetic aperture radar imaging, Jour. Func. Analysis, 264 (2013), 246-269.  doi: 10.1016/j.jfa.2012.10.008.  Google Scholar

[2]

G. AmbartsoumianR. FeleaV. P. KrishnanC. J. Nolan and E. T. Quinto, Singular FIOs in SAR imaging Ⅱ: Transmitter and receiver with different speeds, SIAM J. Math. Analysis, 50 (2018), 591-621.  doi: 10.1137/17M1125741.  Google Scholar

[3] G. Arfken, Mathematical Methods for Physicists, Academic Press, New York-London, 1966.   Google Scholar
[4]

V. I. Arnol'd, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, I: The Classification of Critical Points, Caustics and Wave Fronts, Monographs in Mathematics, 82. Birkhäuser Boston, Inc., Boston, MA, 1985. doi: 10.1007/978-1-4612-5154-5.  Google Scholar

[5]

B. Borden and M. Cheney, Synthetic-aperture imaging from high-Doppler-resolution measurements, Inverse Problems, 21 (2005), 1-11.  doi: 10.1088/0266-5611/21/1/001.  Google Scholar

[6]

T. Bröcker and L. Lander, Differentiable germs and catastrophes, London Math. Soc. Lect. Note Series, Cambridge Univ. Press, Cambridge-New York-Melbourne, (1975).  Google Scholar

[7]

M. Cheney and B. Borden, Theory of waveform-diverse moving-target spotlight synthetic-aperture radar, SIAM J. Imaging Sci., 4 (2011), 1180-1199.  doi: 10.1137/100808320.  Google Scholar

[8]

M. Cheney and B. Borden, Fundamentals of Radar Imaging, CBMS-NSF Regional Conference Series in Applied Mathematics, 79. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719291.  Google Scholar

[9]

S. L. Coetzee, C. L. Baker and H. D. Griffiths, Narrow band high resolution radar imaging, in 2006 IEEE Conference on Radar, (2006), 622–625. doi: 10.1109/RADAR.2006.1631865.  Google Scholar

[10]

J. J. Duistermaat, Fourier Integral Operators, Progress in Mathematics, 130. Birkhäuser Boston, Inc., Boston, MA, 1996.  Google Scholar

[11]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities, Comm. Partial Differential Equations, 30 (2005), 1717-1740.  doi: 10.1080/03605300500299968.  Google Scholar

[12]

R. Felea, Composition of Fourier Integral Operators with Fold and Blow-Down Singularities, Thesis (Ph.D.)-University of Rochester, 2004. 62 pp.  Google Scholar

[13]

R. Felea, Displacement of artefacts in inverse scattering, Inverse Problems, 23 (2007), 1519-1531.  doi: 10.1088/0266-5611/23/4/009.  Google Scholar

[14]

R. FeleaR. Gaburro and C. Nolan, Microlocal analysis of SAR imaging of a dynamic reflectivity function, SIAM J. Math. Analysis, 4 (2013), 2767-2789.  doi: 10.1137/120873571.  Google Scholar

[15]

R. Felea and A. Greenleaf, Fourier integral operators with open umbrellas and seismic inversion for cusp caustics, Math. Res. Lett., 17 (2010), 867-886.  doi: 10.4310/MRL.2010.v17.n5.a6.  Google Scholar

[16]

R. Felea and C. Nolan, Monostatic SAR with fold/cusp singularities, Jour. Fourier Analysis Appl., 21 (2015), 799-821.  doi: 10.1007/s00041-015-9387-0.  Google Scholar

[17]

R. Felea and E. T. Quinto, The microlocal properties of the local 3-D SPECT operator, SIAM J. Math. Anal., 43 (2011), 1145-1157.  doi: 10.1137/100807703.  Google Scholar

[18]

M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1973.  Google Scholar

[19]

A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. Jour., 58 (1989), 205-240.  doi: 10.1215/S0012-7094-89-05811-0.  Google Scholar

[20]

V. Guillemin, On some results of Gel'fand in integral geometry, in Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 43 (1985), 149–155. doi: 10.1090/pspum/043/812288.  Google Scholar

[21]

V. Guillemin, Cosmology in (2 + 1)-Dimensions, Cyclic Models, and Deformations of $M_{2, 1}$, Annals of Math. Studies, 121. Princeton Univ. Press, Princeton, NJ, 1989. doi: 10.1515/9781400882410.  Google Scholar

[22]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. Jour., 48 (1981), 251-267.  doi: 10.1215/S0012-7094-81-04814-6.  Google Scholar

[23]

L. Hörmander, Fourier integral operators, I, Acta Math., 127 (1971), 79-183.  doi: 10.1007/BF02392052.  Google Scholar

[24]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III: Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften, 274. Springer-Verlag, Berlin, 1985.  Google Scholar

[25]

L. Hörmander, The Analysis of Linear Partial Differential Operators, IV: Fourier Integral Operators, Grundlehren der Mathematischen Wissenschaften, 275. Springer-Verlag, Berlin, 1985.  Google Scholar

[26]

R. B. Melrose and G. A. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., 32 (1979), 483-519.  doi: 10.1002/cpa.3160320403.  Google Scholar

[27]

D. Mensa, High Resolution Radar Imaging, Artech House, Dedham, MA, 1981. Google Scholar

[28]

D. L. MensaS. Halevy and G. Wade, Coherent Doppler tomography for microwave imaging, Proceedings of the IEEE, 71 (1983), 254-261.  doi: 10.1109/PROC.1983.12563.  Google Scholar

[29]

D. Mensa and G. Heidbreder, Bistatic synthetic-aperture radar imaging of rotating objects, IEEE Trans. Aerosp. and Electronic Sys., 18 (1982), 423-431.  doi: 10.1109/TAES.1982.309249.  Google Scholar

[30]

C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the wave equation, Comm. Partial Differential Equations, 22 (1997), 919-952.  doi: 10.1080/03605309708821289.  Google Scholar

[31]

C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221-235.  doi: 10.1088/0266-5611/18/1/315.  Google Scholar

[32]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging, Jour. Fourier Analysis and Appl., 10 (2004), 133-148.  doi: 10.1007/s00041-004-8008-0.  Google Scholar

[33]

E. T. Quinto and H. Rullgård, Local singularity reconstruction from integrals over curves in $\mathbb R^3$, Inverse Probl. Imaging, 7 (2013), 585-609.  doi: 10.3934/ipi.2013.7.585.  Google Scholar

[34]

B. D. Rigling, Intrinsic processing gains in noise radar, IEEE Conference on Waveform Diversity & Design Conference, (2006). doi: 10.1109/WDD.2006.8321462.  Google Scholar

[35]

M. S. Roulston and D. O. Muhleman, Synthesizing radar maps of polar regions with a Doppler-only method, Applied Optics, 36 (1997), 3912-3919.  doi: 10.1364/AO.36.003912.  Google Scholar

[36]

P. Stefanov and G. Uhlmann, Is a curved flight path in SAR better than a straight one?, SIAM J. Appl. Math., 73 (2013), 1596-1612.  doi: 10.1137/120882639.  Google Scholar

[37]

H. B. Sun, H. C. Feng and Y. L. Lu, High resolution radar tomographic imaging using single-tone CW signals, in 2010 IEEE Radar Conference, (2010). doi: 10.1109/RADAR.2010.5494477.  Google Scholar

[38]

J. H. Thomson and J. E. B. Ponsonby, Two-dimensional aperture synthesis in lunar radar astronomy, Proc. R. Soc. London Ser. A, 303 (1968), 477-491.   Google Scholar

[39]

S. V. Tsynkov, On the use of start-stop approximation for spaceborne SAR imaging, SIAM J. Imaging Sci., 2 (2009), 646-669.  doi: 10.1137/08074026X.  Google Scholar

[40]

L. Wang and B. Yazici, Bistatic synthetic aperture radar imaging using ultranarrowband continuous waveforms, IEEE Trans. Image Process., 21 (2012), 3673-3686.  doi: 10.1109/TIP.2012.2193134.  Google Scholar

[41]

L. Wang and B. Yazici, Bistatic synthetic aperture radar imaging of moving targets using ultra-narrowband continuous waveform, SIAM J. Imaging Sci., 7 (2014), 824-866.  doi: 10.1137/130906714.  Google Scholar

[42]

M. C. Wicks, B. Himed, J. L. E. Bracken, H. Bascom and J. Clancy, Ultra narrow band adaptive tomographic radar, in 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, (2005). doi: 10.1109/CAMAP.2005.1574177.  Google Scholar

[43]

C. E. Yarman, L. Wang and B. Yazici, Doppler synthetic aperture hitchhiker imaging, Inverse Problems, 26 (2010), 065006, 26 pp. doi: 10.1088/0266-5611/26/6/065006.  Google Scholar

[44]

B. Yazici, I.-Y. Son and H. C. Yanik, Doppler synthetic aperture radar interferometry: A novel SAR interferometry for height mapping using ultra-narrowband waveforms, Inverse Problems, 34 (2018), 055003, 28 pp. doi: 10.1088/1361-6420/aab24c.  Google Scholar

show all references

References:
[1]

G. AmbartsoumianR. FeleaV. P. KrishnanC. Nolan and E. T. Quinto, A class of singular Fourier integral operators in synthetic aperture radar imaging, Jour. Func. Analysis, 264 (2013), 246-269.  doi: 10.1016/j.jfa.2012.10.008.  Google Scholar

[2]

G. AmbartsoumianR. FeleaV. P. KrishnanC. J. Nolan and E. T. Quinto, Singular FIOs in SAR imaging Ⅱ: Transmitter and receiver with different speeds, SIAM J. Math. Analysis, 50 (2018), 591-621.  doi: 10.1137/17M1125741.  Google Scholar

[3] G. Arfken, Mathematical Methods for Physicists, Academic Press, New York-London, 1966.   Google Scholar
[4]

V. I. Arnol'd, S. M. Gusein-Zade and A. N. Varchenko, Singularities of Differentiable Maps, I: The Classification of Critical Points, Caustics and Wave Fronts, Monographs in Mathematics, 82. Birkhäuser Boston, Inc., Boston, MA, 1985. doi: 10.1007/978-1-4612-5154-5.  Google Scholar

[5]

B. Borden and M. Cheney, Synthetic-aperture imaging from high-Doppler-resolution measurements, Inverse Problems, 21 (2005), 1-11.  doi: 10.1088/0266-5611/21/1/001.  Google Scholar

[6]

T. Bröcker and L. Lander, Differentiable germs and catastrophes, London Math. Soc. Lect. Note Series, Cambridge Univ. Press, Cambridge-New York-Melbourne, (1975).  Google Scholar

[7]

M. Cheney and B. Borden, Theory of waveform-diverse moving-target spotlight synthetic-aperture radar, SIAM J. Imaging Sci., 4 (2011), 1180-1199.  doi: 10.1137/100808320.  Google Scholar

[8]

M. Cheney and B. Borden, Fundamentals of Radar Imaging, CBMS-NSF Regional Conference Series in Applied Mathematics, 79. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719291.  Google Scholar

[9]

S. L. Coetzee, C. L. Baker and H. D. Griffiths, Narrow band high resolution radar imaging, in 2006 IEEE Conference on Radar, (2006), 622–625. doi: 10.1109/RADAR.2006.1631865.  Google Scholar

[10]

J. J. Duistermaat, Fourier Integral Operators, Progress in Mathematics, 130. Birkhäuser Boston, Inc., Boston, MA, 1996.  Google Scholar

[11]

R. Felea, Composition of Fourier integral operators with fold and blowdown singularities, Comm. Partial Differential Equations, 30 (2005), 1717-1740.  doi: 10.1080/03605300500299968.  Google Scholar

[12]

R. Felea, Composition of Fourier Integral Operators with Fold and Blow-Down Singularities, Thesis (Ph.D.)-University of Rochester, 2004. 62 pp.  Google Scholar

[13]

R. Felea, Displacement of artefacts in inverse scattering, Inverse Problems, 23 (2007), 1519-1531.  doi: 10.1088/0266-5611/23/4/009.  Google Scholar

[14]

R. FeleaR. Gaburro and C. Nolan, Microlocal analysis of SAR imaging of a dynamic reflectivity function, SIAM J. Math. Analysis, 4 (2013), 2767-2789.  doi: 10.1137/120873571.  Google Scholar

[15]

R. Felea and A. Greenleaf, Fourier integral operators with open umbrellas and seismic inversion for cusp caustics, Math. Res. Lett., 17 (2010), 867-886.  doi: 10.4310/MRL.2010.v17.n5.a6.  Google Scholar

[16]

R. Felea and C. Nolan, Monostatic SAR with fold/cusp singularities, Jour. Fourier Analysis Appl., 21 (2015), 799-821.  doi: 10.1007/s00041-015-9387-0.  Google Scholar

[17]

R. Felea and E. T. Quinto, The microlocal properties of the local 3-D SPECT operator, SIAM J. Math. Anal., 43 (2011), 1145-1157.  doi: 10.1137/100807703.  Google Scholar

[18]

M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1973.  Google Scholar

[19]

A. Greenleaf and G. Uhlmann, Nonlocal inversion formulas for the X-ray transform, Duke Math. Jour., 58 (1989), 205-240.  doi: 10.1215/S0012-7094-89-05811-0.  Google Scholar

[20]

V. Guillemin, On some results of Gel'fand in integral geometry, in Pseudodifferential Operators and Applications (Notre Dame, Ind., 1984), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 43 (1985), 149–155. doi: 10.1090/pspum/043/812288.  Google Scholar

[21]

V. Guillemin, Cosmology in (2 + 1)-Dimensions, Cyclic Models, and Deformations of $M_{2, 1}$, Annals of Math. Studies, 121. Princeton Univ. Press, Princeton, NJ, 1989. doi: 10.1515/9781400882410.  Google Scholar

[22]

V. Guillemin and G. Uhlmann, Oscillatory integrals with singular symbols, Duke Math. Jour., 48 (1981), 251-267.  doi: 10.1215/S0012-7094-81-04814-6.  Google Scholar

[23]

L. Hörmander, Fourier integral operators, I, Acta Math., 127 (1971), 79-183.  doi: 10.1007/BF02392052.  Google Scholar

[24]

L. Hörmander, The Analysis of Linear Partial Differential Operators, III: Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften, 274. Springer-Verlag, Berlin, 1985.  Google Scholar

[25]

L. Hörmander, The Analysis of Linear Partial Differential Operators, IV: Fourier Integral Operators, Grundlehren der Mathematischen Wissenschaften, 275. Springer-Verlag, Berlin, 1985.  Google Scholar

[26]

R. B. Melrose and G. A. Uhlmann, Lagrangian intersection and the Cauchy problem, Comm. Pure Appl. Math., 32 (1979), 483-519.  doi: 10.1002/cpa.3160320403.  Google Scholar

[27]

D. Mensa, High Resolution Radar Imaging, Artech House, Dedham, MA, 1981. Google Scholar

[28]

D. L. MensaS. Halevy and G. Wade, Coherent Doppler tomography for microwave imaging, Proceedings of the IEEE, 71 (1983), 254-261.  doi: 10.1109/PROC.1983.12563.  Google Scholar

[29]

D. Mensa and G. Heidbreder, Bistatic synthetic-aperture radar imaging of rotating objects, IEEE Trans. Aerosp. and Electronic Sys., 18 (1982), 423-431.  doi: 10.1109/TAES.1982.309249.  Google Scholar

[30]

C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the wave equation, Comm. Partial Differential Equations, 22 (1997), 919-952.  doi: 10.1080/03605309708821289.  Google Scholar

[31]

C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221-235.  doi: 10.1088/0266-5611/18/1/315.  Google Scholar

[32]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging, Jour. Fourier Analysis and Appl., 10 (2004), 133-148.  doi: 10.1007/s00041-004-8008-0.  Google Scholar

[33]

E. T. Quinto and H. Rullgård, Local singularity reconstruction from integrals over curves in $\mathbb R^3$, Inverse Probl. Imaging, 7 (2013), 585-609.  doi: 10.3934/ipi.2013.7.585.  Google Scholar

[34]

B. D. Rigling, Intrinsic processing gains in noise radar, IEEE Conference on Waveform Diversity & Design Conference, (2006). doi: 10.1109/WDD.2006.8321462.  Google Scholar

[35]

M. S. Roulston and D. O. Muhleman, Synthesizing radar maps of polar regions with a Doppler-only method, Applied Optics, 36 (1997), 3912-3919.  doi: 10.1364/AO.36.003912.  Google Scholar

[36]

P. Stefanov and G. Uhlmann, Is a curved flight path in SAR better than a straight one?, SIAM J. Appl. Math., 73 (2013), 1596-1612.  doi: 10.1137/120882639.  Google Scholar

[37]

H. B. Sun, H. C. Feng and Y. L. Lu, High resolution radar tomographic imaging using single-tone CW signals, in 2010 IEEE Radar Conference, (2010). doi: 10.1109/RADAR.2010.5494477.  Google Scholar

[38]

J. H. Thomson and J. E. B. Ponsonby, Two-dimensional aperture synthesis in lunar radar astronomy, Proc. R. Soc. London Ser. A, 303 (1968), 477-491.   Google Scholar

[39]

S. V. Tsynkov, On the use of start-stop approximation for spaceborne SAR imaging, SIAM J. Imaging Sci., 2 (2009), 646-669.  doi: 10.1137/08074026X.  Google Scholar

[40]

L. Wang and B. Yazici, Bistatic synthetic aperture radar imaging using ultranarrowband continuous waveforms, IEEE Trans. Image Process., 21 (2012), 3673-3686.  doi: 10.1109/TIP.2012.2193134.  Google Scholar

[41]

L. Wang and B. Yazici, Bistatic synthetic aperture radar imaging of moving targets using ultra-narrowband continuous waveform, SIAM J. Imaging Sci., 7 (2014), 824-866.  doi: 10.1137/130906714.  Google Scholar

[42]

M. C. Wicks, B. Himed, J. L. E. Bracken, H. Bascom and J. Clancy, Ultra narrow band adaptive tomographic radar, in 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, (2005). doi: 10.1109/CAMAP.2005.1574177.  Google Scholar

[43]

C. E. Yarman, L. Wang and B. Yazici, Doppler synthetic aperture hitchhiker imaging, Inverse Problems, 26 (2010), 065006, 26 pp. doi: 10.1088/0266-5611/26/6/065006.  Google Scholar

[44]

B. Yazici, I.-Y. Son and H. C. Yanik, Doppler synthetic aperture radar interferometry: A novel SAR interferometry for height mapping using ultra-narrowband waveforms, Inverse Problems, 34 (2018), 055003, 28 pp. doi: 10.1088/1361-6420/aab24c.  Google Scholar

Figure 1.  Schematic of a circular flight path
Figure 2.  The curves of constant $ u $ (hyperbolas) and constant $ v $ (vertical lines) for a location on the flight path in which the flight velocity vector is along the vertical axis. The coordinate system is centered directly under the antenna
[1]

Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659

[2]

Kaitlyn Muller. The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging. Inverse Problems & Imaging, 2016, 10 (2) : 549-561. doi: 10.3934/ipi.2016011

[3]

T. Varslo, C E Yarman, M. Cheney, B Yazıcı. A variational approach to waveform design for synthetic-aperture imaging. Inverse Problems & Imaging, 2007, 1 (3) : 577-592. doi: 10.3934/ipi.2007.1.577

[4]

Yong-Kum Cho. A quadratic Fourier representation of the Boltzmann collision operator with an application to the stability problem. Kinetic & Related Models, 2012, 5 (3) : 441-458. doi: 10.3934/krm.2012.5.441

[5]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[6]

Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems & Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77

[7]

Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems & Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831

[8]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[9]

Ru-Yu Lai. Global uniqueness for an inverse problem for the magnetic Schrödinger operator. Inverse Problems & Imaging, 2011, 5 (1) : 59-73. doi: 10.3934/ipi.2011.5.59

[10]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[11]

Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004

[12]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[13]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[14]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[15]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[16]

Y. T. Li, R. Wong. Integral and series representations of the dirac delta function. Communications on Pure & Applied Analysis, 2008, 7 (2) : 229-247. doi: 10.3934/cpaa.2008.7.229

[17]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[18]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[19]

Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90

[20]

Carlos Conca, Luis Friz, Jaime H. Ortega. Direct integral decomposition for periodic function spaces and application to Bloch waves. Networks & Heterogeneous Media, 2008, 3 (3) : 555-566. doi: 10.3934/nhm.2008.3.555

2018 Impact Factor: 1.469

Article outline

Figures and Tables

[Back to Top]