• Previous Article
    Poisson image denoising based on fractional-order total variation
  • IPI Home
  • This Issue
  • Next Article
    A content-adaptive unstructured grid based integral equation method with the TV regularization for SPECT reconstruction
February  2020, 14(1): 53-75. doi: 10.3934/ipi.2019063

A partial data inverse problem for the convection-diffusion equation

1. 

TIFR Centre for Applicable Mathematics, Bangalore 560065, India

2. 

Beijing Computational Science Research Center, Beijing 100193, China

* Corresponding author: Manmohan Vashisth

Received  February 2019 Revised  September 2019 Published  November 2019

Fund Project: First author is supported by Matrics grant MTR/2017/000837. The work of second author is supported by NSAF grant (No. U1930402)

In this article we study the inverse problem of determining the convection term and the time-dependent density coefficient appearing in the convection-diffusion equation. We prove the unique determination of these coefficients from the knowledge of solution measured on a subset of the boundary.

Citation: Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems & Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063
References:
[1]

S. A. Avdonin and M. I. Belishev, Dynamical inverse problem for the Schrödinger equation (BC-method), in Proceedings of the St. Petersburg Mathematical Society, Amer. Math. Soc. Transl. Ser., 10, Amer. Math. Soc., Providence, RI, 2005, 1–14. doi: 10.1090/trans2/214/01.  Google Scholar

[2]

S. A. Avdonin and T. I. Seidman, Identication of $q(x)$ in $u_t = \Delta u - qu$, from boundary observations, SIAM J. Control Optim., 33 (1995), 1247-1255.  doi: 10.1137/S0363012993249729.  Google Scholar

[3]

L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554.  doi: 10.1088/0266-5611/23/3/C01.  Google Scholar

[4]

M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1–R67. doi: 10.1088/0266-5611/23/5/R01.  Google Scholar

[5]

M. Bellassoued and D. Dos Santos Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 30pp. doi: 10.1088/0266-5611/26/12/125010.  Google Scholar

[6]

M. BellassouedD. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data, Appl. Anal., 85 (2006), 1219-1243.  doi: 10.1080/00036810600787873.  Google Scholar

[7]

M. BellassouedD. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl., 343 (2008), 1036-1046.  doi: 10.1016/j.jmaa.2008.01.098.  Google Scholar

[8]

M. BellassouedY. Kian and E. Soccorsi, An inverse stability result for non-compactly supported potentials by one arbitrary lateral Neumann observation, J. Differential Equations, 260 (2016), 7535-7562.  doi: 10.1016/j.jde.2016.01.033.  Google Scholar

[9]

M. BellassouedY. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publ. Res. Inst. Math. Sci., 54 (2018), 679-728.  doi: 10.4171/PRIMS/54-4-1.  Google Scholar

[10]

I. Ben Aïcha, Stability estimate for a hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 21pp. doi: 10.1088/0266-5611/31/12/125010.  Google Scholar

[11]

I. Ben Aïcha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, J. Math. Phys., 58 (2017), 21pp. doi: 10.1063/1.4995606.  Google Scholar

[12]

A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.   Google Scholar

[13]

A. L. Bukhge${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$m and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668.  doi: 10.1081/PDE-120002868.  Google Scholar

[14]

P. Caro and Y. Kian, Determination of convection terms and quasi-linearities appearing in diffusion equations, preprint, arXiv: 1812.08495. Google Scholar

[15]

J. Cheng and M. Yamamoto, The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions, Inverse Problems, 16 (2000), L25–L30. doi: 10.1088/0266-5611/16/3/101.  Google Scholar

[16]

J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement, Nonlinear Anal., 50 (2002), 163-171.  doi: 10.1016/S0362-546X(01)00742-8.  Google Scholar

[17]

J. Cheng and M. Yamamoto, Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case, SIAM J. Math. Anal., 35 (2004), 1371-1393.  doi: 10.1137/S0036141003422497.  Google Scholar

[18]

M. Choulli, An abstract inverse problem, J. Appl. Math. Stochastic Anal., 4 (1991), 117-128.  doi: 10.1155/S1048953391000084.  Google Scholar

[19]

M. Choulli, Abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202.  doi: 10.1016/0022-247X(91)90299-F.  Google Scholar

[20]

M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Relat. Fields, 3 (2013), 143-160.  doi: 10.3934/mcrf.2013.3.143.  Google Scholar

[21]

M. Choulli and Y. Kian, Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term, J. Math. Pures Appl. (9), 114 (2018), 235–261. doi: 10.1016/j.matpur.2017.12.003.  Google Scholar

[22]

M. ChoulliY. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.  doi: 10.1137/140986268.  Google Scholar

[23]

M. Choulli, Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques, Mathématiques & Applications, 65, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-02460-3.  Google Scholar

[24]

M. Cristofol and E. Soccorsi, Stability estimate in an inverse problem for non-autonomous magnetic Schrödinger equations, Appl. Anal., 90 (2011), 1499-1520.  doi: 10.1080/00036811.2010.524161.  Google Scholar

[25]

Z. Cha DengJ. Ning Yu and Y. Liu, Identifying the coefficient of first-order in parabolic equation from final measurement data, Math. Comput. Simulation, 77 (2008), 421-435.  doi: 10.1016/j.matcom.2008.01.002.  Google Scholar

[26]

D. Dos Santos FerreiraC. E. KenigJ. Sjöstrand and G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), 467-488.  doi: 10.1007/s00220-006-0151-9.  Google Scholar

[27]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 18pp. doi: 10.1063/1.2841329.  Google Scholar

[28]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737-1758.  doi: 10.1080/03605300701382340.  Google Scholar

[29]

G. Eskin, Inverse problems for general second order hyperbolic equations with time-dependent coefficients, Bull. Math. Sci., 7 (2017), 247-307.  doi: 10.1007/s13373-017-0100-2.  Google Scholar

[30]

P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29 (2013), 18pp. doi: 10.1088/0266-5611/29/6/065006.  Google Scholar

[31]

L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅲ: Pseudo-Differential Operators, Classics in Mathematics, Springer, Berlin, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[32]

G. Hu and Y. Kian, Determination of singular time-dependent coefficients for wave equations from full and partial data, Inverse Probl. Imaging, 12 (2018), 745-772.  doi: 10.3934/ipi.2018032.  Google Scholar

[33]

V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.  doi: 10.1016/0022-0396(91)90051-A.  Google Scholar

[34]

V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.  doi: 10.1007/BF00392201.  Google Scholar

[35]

V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, Springer, New York, 2006. doi: 10.1007/0-387-32183-7.  Google Scholar

[36]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001. doi: 10.1201/9781420036220.  Google Scholar

[37]

Y. Kian, Unique determination of a time-dependent potential for wave equations from partial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 973-990.  doi: 10.1016/j.anihpc.2016.07.003.  Google Scholar

[38]

Y. Kian, Stability in the determination of a time-dependent coefficient for wave equations from partial data, J. Math. Anal. Appl., 436 (2016), 408-428.  doi: 10.1016/j.jmaa.2015.12.018.  Google Scholar

[39]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021-4046.  doi: 10.1137/16M1076708.  Google Scholar

[40]

Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, 2019 (2017), 5087-5126.  doi: 10.1093/imrn/rnx263.  Google Scholar

[41]

Y. Kian, Q. Sang Phan and E. Soccorsi, A Carleman estimate for infinite cyclindrical quantum domains and the application to inverse problems, Inverse Problems, 30 (2014), 16pp. doi: 10.1088/0266-5611/30/5/055016.  Google Scholar

[42]

Y. KianQ. Sang Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains, J. Math. Anal. Appl., 426 (2015), 194-210.  doi: 10.1016/j.jmaa.2015.01.028.  Google Scholar

[43]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.  Google Scholar

[44]

V. P. Krishnan and M. Vashisth, An inverse problem for the relativistic Schrödinger equation with partial boundary data, Applicable Analysis, (2019). doi: 10.1080/00036811.2018.1549321.  Google Scholar

[45]

J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Travaux et Recherches Mathématiques, 1, Dunod, Paris, 1968.  Google Scholar

[46]

G. Nakamura and S. Sasayama, Inverse boundary value problem for the heat equation with discontinuous coefficients, J. Inverse Ill-Posed Probl., 21 (2013), 217-232.  doi: 10.1515/jip-2012-0073.  Google Scholar

[47]

V. Pohjola, A uniqueness result for an inverse problem of the steady state convection-diffusion equation, SIAM J. Math. Anal., 47 (2015), 2084-2103.  doi: 10.1137/140970926.  Google Scholar

[48]

S. RabieniaHaratbar, Support theorem for the light-ray transform of vector fields on Minkowski spaces, Inverse Probl. Imaging, 12 (2018), 293-314.  doi: 10.3934/ipi.2018013.  Google Scholar

[49]

Ra kesh and W. W. Symes, Uniqueness for an inverse problem for the wave equation, Comm. Partial Differential Equations, 13 (1988), 87-96.  doi: 10.1080/03605308808820539.  Google Scholar

[50]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 17pp. doi: 10.1088/0266-5611/29/9/095015.  Google Scholar

[51]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.  Google Scholar

[52]

P. D. Stefanov, Support theorems for the light ray transform on analytic Lorentzian manifolds, Proc. Amer. Math. Soc., 145 (2017), 1259-1274.  doi: 10.1090/proc/13117.  Google Scholar

[53]

Z. Sun, An inverse boundary value problem for the Schrödinger operator with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[54]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153–169. doi: 10.2307/1971291.  Google Scholar

show all references

References:
[1]

S. A. Avdonin and M. I. Belishev, Dynamical inverse problem for the Schrödinger equation (BC-method), in Proceedings of the St. Petersburg Mathematical Society, Amer. Math. Soc. Transl. Ser., 10, Amer. Math. Soc., Providence, RI, 2005, 1–14. doi: 10.1090/trans2/214/01.  Google Scholar

[2]

S. A. Avdonin and T. I. Seidman, Identication of $q(x)$ in $u_t = \Delta u - qu$, from boundary observations, SIAM J. Control Optim., 33 (1995), 1247-1255.  doi: 10.1137/S0363012993249729.  Google Scholar

[3]

L. Baudouin and J.-P. Puel, Uniqueness and stability in an inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554.  doi: 10.1088/0266-5611/23/3/C01.  Google Scholar

[4]

M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1–R67. doi: 10.1088/0266-5611/23/5/R01.  Google Scholar

[5]

M. Bellassoued and D. Dos Santos Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 30pp. doi: 10.1088/0266-5611/26/12/125010.  Google Scholar

[6]

M. BellassouedD. Jellali and M. Yamamoto, Lipschitz stability for a hyperbolic inverse problem by finite local boundary data, Appl. Anal., 85 (2006), 1219-1243.  doi: 10.1080/00036810600787873.  Google Scholar

[7]

M. BellassouedD. Jellali and M. Yamamoto, Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map, J. Math. Anal. Appl., 343 (2008), 1036-1046.  doi: 10.1016/j.jmaa.2008.01.098.  Google Scholar

[8]

M. BellassouedY. Kian and E. Soccorsi, An inverse stability result for non-compactly supported potentials by one arbitrary lateral Neumann observation, J. Differential Equations, 260 (2016), 7535-7562.  doi: 10.1016/j.jde.2016.01.033.  Google Scholar

[9]

M. BellassouedY. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publ. Res. Inst. Math. Sci., 54 (2018), 679-728.  doi: 10.4171/PRIMS/54-4-1.  Google Scholar

[10]

I. Ben Aïcha, Stability estimate for a hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 21pp. doi: 10.1088/0266-5611/31/12/125010.  Google Scholar

[11]

I. Ben Aïcha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, J. Math. Phys., 58 (2017), 21pp. doi: 10.1063/1.4995606.  Google Scholar

[12]

A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.   Google Scholar

[13]

A. L. Bukhge${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$m and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668.  doi: 10.1081/PDE-120002868.  Google Scholar

[14]

P. Caro and Y. Kian, Determination of convection terms and quasi-linearities appearing in diffusion equations, preprint, arXiv: 1812.08495. Google Scholar

[15]

J. Cheng and M. Yamamoto, The global uniqueness for determining two convection coefficients from Dirichlet to Neumann map in two dimensions, Inverse Problems, 16 (2000), L25–L30. doi: 10.1088/0266-5611/16/3/101.  Google Scholar

[16]

J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement, Nonlinear Anal., 50 (2002), 163-171.  doi: 10.1016/S0362-546X(01)00742-8.  Google Scholar

[17]

J. Cheng and M. Yamamoto, Determination of two convection coefficients from Dirichlet to Neumann map in the two-dimensional case, SIAM J. Math. Anal., 35 (2004), 1371-1393.  doi: 10.1137/S0036141003422497.  Google Scholar

[18]

M. Choulli, An abstract inverse problem, J. Appl. Math. Stochastic Anal., 4 (1991), 117-128.  doi: 10.1155/S1048953391000084.  Google Scholar

[19]

M. Choulli, Abstract inverse problem and application, J. Math. Anal. Appl., 160 (1991), 190-202.  doi: 10.1016/0022-247X(91)90299-F.  Google Scholar

[20]

M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Math. Control Relat. Fields, 3 (2013), 143-160.  doi: 10.3934/mcrf.2013.3.143.  Google Scholar

[21]

M. Choulli and Y. Kian, Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map. Application to the determination of a nonlinear term, J. Math. Pures Appl. (9), 114 (2018), 235–261. doi: 10.1016/j.matpur.2017.12.003.  Google Scholar

[22]

M. ChoulliY. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.  doi: 10.1137/140986268.  Google Scholar

[23]

M. Choulli, Une Introduction aux Problèmes Inverses Elliptiques et Paraboliques, Mathématiques & Applications, 65, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-02460-3.  Google Scholar

[24]

M. Cristofol and E. Soccorsi, Stability estimate in an inverse problem for non-autonomous magnetic Schrödinger equations, Appl. Anal., 90 (2011), 1499-1520.  doi: 10.1080/00036811.2010.524161.  Google Scholar

[25]

Z. Cha DengJ. Ning Yu and Y. Liu, Identifying the coefficient of first-order in parabolic equation from final measurement data, Math. Comput. Simulation, 77 (2008), 421-435.  doi: 10.1016/j.matcom.2008.01.002.  Google Scholar

[26]

D. Dos Santos FerreiraC. E. KenigJ. Sjöstrand and G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), 467-488.  doi: 10.1007/s00220-006-0151-9.  Google Scholar

[27]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 18pp. doi: 10.1063/1.2841329.  Google Scholar

[28]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737-1758.  doi: 10.1080/03605300701382340.  Google Scholar

[29]

G. Eskin, Inverse problems for general second order hyperbolic equations with time-dependent coefficients, Bull. Math. Sci., 7 (2017), 247-307.  doi: 10.1007/s13373-017-0100-2.  Google Scholar

[30]

P. Gaitan and Y. Kian, A stability result for a time-dependent potential in a cylindrical domain, Inverse Problems, 29 (2013), 18pp. doi: 10.1088/0266-5611/29/6/065006.  Google Scholar

[31]

L. Hörmander, The Analysis of Linear Partial Differential Operators Ⅲ: Pseudo-Differential Operators, Classics in Mathematics, Springer, Berlin, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[32]

G. Hu and Y. Kian, Determination of singular time-dependent coefficients for wave equations from full and partial data, Inverse Probl. Imaging, 12 (2018), 745-772.  doi: 10.3934/ipi.2018032.  Google Scholar

[33]

V. Isakov, Completeness of products of solutions and some inverse problems for PDE, J. Differential Equations, 92 (1991), 305-316.  doi: 10.1016/0022-0396(91)90051-A.  Google Scholar

[34]

V. Isakov, On uniqueness in inverse problems for semilinear parabolic equations, Arch. Rational Mech. Anal., 124 (1993), 1-12.  doi: 10.1007/BF00392201.  Google Scholar

[35]

V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, Springer, New York, 2006. doi: 10.1007/0-387-32183-7.  Google Scholar

[36]

A. Katchalov, Y. Kurylev and M. Lassas, Inverse Boundary Spectral Problems, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 123, Chapman & Hall/CRC, Boca Raton, FL, 2001. doi: 10.1201/9781420036220.  Google Scholar

[37]

Y. Kian, Unique determination of a time-dependent potential for wave equations from partial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), 973-990.  doi: 10.1016/j.anihpc.2016.07.003.  Google Scholar

[38]

Y. Kian, Stability in the determination of a time-dependent coefficient for wave equations from partial data, J. Math. Anal. Appl., 436 (2016), 408-428.  doi: 10.1016/j.jmaa.2015.12.018.  Google Scholar

[39]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021-4046.  doi: 10.1137/16M1076708.  Google Scholar

[40]

Y. Kian and L. Oksanen, Recovery of time-dependent coefficient on Riemanian manifold for hyperbolic equations, Int. Math. Res. Not. IMRN, 2019 (2017), 5087-5126.  doi: 10.1093/imrn/rnx263.  Google Scholar

[41]

Y. Kian, Q. Sang Phan and E. Soccorsi, A Carleman estimate for infinite cyclindrical quantum domains and the application to inverse problems, Inverse Problems, 30 (2014), 16pp. doi: 10.1088/0266-5611/30/5/055016.  Google Scholar

[42]

Y. KianQ. Sang Phan and E. Soccorsi, Hölder stable determination of a quantum scalar potential in unbounded cylindrical domains, J. Math. Anal. Appl., 426 (2015), 194-210.  doi: 10.1016/j.jmaa.2015.01.028.  Google Scholar

[43]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.  Google Scholar

[44]

V. P. Krishnan and M. Vashisth, An inverse problem for the relativistic Schrödinger equation with partial boundary data, Applicable Analysis, (2019). doi: 10.1080/00036811.2018.1549321.  Google Scholar

[45]

J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Travaux et Recherches Mathématiques, 1, Dunod, Paris, 1968.  Google Scholar

[46]

G. Nakamura and S. Sasayama, Inverse boundary value problem for the heat equation with discontinuous coefficients, J. Inverse Ill-Posed Probl., 21 (2013), 217-232.  doi: 10.1515/jip-2012-0073.  Google Scholar

[47]

V. Pohjola, A uniqueness result for an inverse problem of the steady state convection-diffusion equation, SIAM J. Math. Anal., 47 (2015), 2084-2103.  doi: 10.1137/140970926.  Google Scholar

[48]

S. RabieniaHaratbar, Support theorem for the light-ray transform of vector fields on Minkowski spaces, Inverse Probl. Imaging, 12 (2018), 293-314.  doi: 10.3934/ipi.2018013.  Google Scholar

[49]

Ra kesh and W. W. Symes, Uniqueness for an inverse problem for the wave equation, Comm. Partial Differential Equations, 13 (1988), 87-96.  doi: 10.1080/03605308808820539.  Google Scholar

[50]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 17pp. doi: 10.1088/0266-5611/29/9/095015.  Google Scholar

[51]

P. D. Stefanov, Uniqueness of the multi-dimensional inverse scattering problem for time dependent potentials, Math. Z., 201 (1989), 541-559.  doi: 10.1007/BF01215158.  Google Scholar

[52]

P. D. Stefanov, Support theorems for the light ray transform on analytic Lorentzian manifolds, Proc. Amer. Math. Soc., 145 (2017), 1259-1274.  doi: 10.1090/proc/13117.  Google Scholar

[53]

Z. Sun, An inverse boundary value problem for the Schrödinger operator with vector potentials, Trans. Amer. Math. Soc., 338 (1993), 953-969.  doi: 10.2307/2154438.  Google Scholar

[54]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math. (2), 125 (1987), 153–169. doi: 10.2307/1971291.  Google Scholar

[1]

Xiaosheng Li, Gunther Uhlmann. Inverse problems with partial data in a slab. Inverse Problems & Imaging, 2010, 4 (3) : 449-462. doi: 10.3934/ipi.2010.4.449

[2]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[3]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[4]

Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229

[5]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[6]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[7]

Matthias Eller, Daniel Toundykov. Carleman estimates for elliptic boundary value problems with applications to the stablization of hyperbolic systems. Evolution Equations & Control Theory, 2012, 1 (2) : 271-296. doi: 10.3934/eect.2012.1.271

[8]

Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 711-722. doi: 10.3934/dcdss.2013.6.711

[9]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[10]

Lucie Baudouin, Emmanuelle Crépeau, Julie Valein. Global Carleman estimate on a network for the wave equation and application to an inverse problem. Mathematical Control & Related Fields, 2011, 1 (3) : 307-330. doi: 10.3934/mcrf.2011.1.307

[11]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[12]

Hannes Meinlschmidt, Joachim Rehberg. Hölder-estimates for non-autonomous parabolic problems with rough data. Evolution Equations & Control Theory, 2016, 5 (1) : 147-184. doi: 10.3934/eect.2016.5.147

[13]

Thuy N. T. Nguyen. Carleman estimates for semi-discrete parabolic operators with a discontinuous diffusion coefficient and applications to controllability. Mathematical Control & Related Fields, 2014, 4 (2) : 203-259. doi: 10.3934/mcrf.2014.4.203

[14]

Genni Fragnelli. Null controllability of degenerate parabolic equations in non divergence form via Carleman estimates. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 687-701. doi: 10.3934/dcdss.2013.6.687

[15]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[16]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[17]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[18]

Vitali Liskevich, Igor I. Skrypnik, Zeev Sobol. Estimates of solutions for the parabolic $p$-Laplacian equation with measure via parabolic nonlinear potentials. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1731-1744. doi: 10.3934/cpaa.2013.12.1731

[19]

Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4207-4222. doi: 10.3934/dcdsb.2018133

[20]

Peng Gao. Carleman estimates and Unique Continuation Property for 1-D viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 169-188. doi: 10.3934/dcds.2017007

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (69)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]