\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Poisson image denoising based on fractional-order total variation

  • * Corresponding author: Yifei Lou

    * Corresponding author: Yifei Lou
Abstract Full Text(HTML) Figure(7) / Table(2) Related Papers Cited by
  • Poisson noise is an important type of electronic noise that is present in a variety of photon-limited imaging systems. Different from the Gaussian noise, Poisson noise depends on the image intensity, which makes image restoration very challenging. Moreover, complex geometry of images desires a regularization that is capable of preserving piecewise smoothness. In this paper, we propose a Poisson denoising model based on the fractional-order total variation (FOTV). The existence and uniqueness of a solution to the model are established. To solve the problem efficiently, we propose three numerical algorithms based on the Chambolle-Pock primal-dual method, a forward-backward splitting scheme, and the alternating direction method of multipliers (ADMM), each with guaranteed convergence. Various experimental results are provided to demonstrate the effectiveness and efficiency of our proposed methods over the state-of-the-art in Poisson denoising.

    Mathematics Subject Classification: Primary: 65F22, 65Y04; Secondary: 52A41, 49N45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  A synthetic example. Top: the synthetic ground-truth image and two noisy images with peak values 55 and 255, respectively. Bottom: FOTV Poisson denoising results (via Algorithm 3) with the respective fractional order $ 1 $, $ 1.8 $, and $ 2.4 $ for the case with peak value 255

    Figure 2.  Algorithmic comparison in terms of energy (left) and PSNR (right) by denoising the noisy synthetic image with peak value of 255 (top) and the Barbara image with peak value of 55 (bottom)

    Figure 3.  PSNR versus fractional orders for the synthetic image (top) and Barbara image (bottom) with peak values at 55 (left) and 255 (right)

    Figure 4.  Poisson denoising results of Train image with peak at 55

    Figure 5.  Poisson denoising results of Barbara image with peak at 255

    Figure 6.  Poisson denoising results of Mandril image with peak at 55

    Figure 7.  Poisson denoising results of Penguin image with peak at 155 and Cameraman image with peak at 255

    Table 1.  Poisson denoising comparison. Each entry contains PSNR and SSIM values. The best results are highlighted in bold

    Test Image Peak Noisy NPTool NLPCA BM3D Proposed
    Cameraman 55 20.63 27.81/0.87 27.36/0.85 28.80/0.89 28.15/0.87
    155 25.18 30.65/0.91 29.52/0.87 29.06/0.90 30.90/0.92
    255 27.38 32.06/0.93 30.58/0.91 29.45/0.90 32.31/0.94
    Penguin 55 19.53 30.86/0.91 30.49/0.89 31.50/0.92 31.46/0.92
    155 24.01 33.34 /0.94 32.14/0.91 32.37/0.93 33.86/0.95
    255 26.74 34.27/0.95 33.21/0.93 32.69/0.93 34.73/0.96
    Train 55 20.94 28.04/0.88 27.20/0.81 28.01/0.89 28.25/0.88
    155 25.47 30.99 /0.92 29.64/0.88 28.31/0.89 31.06/0.92
    255 27.85 32.38/0.94 30.76/0.88 29.16/0.90 32.43/0.94
    Mandril 55 19.75 22.57/0.76 22.00 /0.71 20.39/0.56 22.80/0.76
    155 24.26 25.73/0.86 25.06/0.84 20.58/0.58 26.00/0.87
    255 26.46 27.67/0.90 26.46/0.87 20.95/0.60 27.76/0.91
    Barbara 55 20.57 25.48/0.81 27.97/0.86 29.44/0.91 25.87/0.81
    155 25.14 28.52/0.87 30.29/0.90 30.77/0.93 29.14/0.89
    255 27.31 30.14/0.91 31.01/0.92 31.47/0.94 30.78/0.92
     | Show Table
    DownLoad: CSV

    Table 2.  Computation time (in sec)

    Test image(size) Peak NPTool NLPCA BM3D Proposed
    Barbara (512 × 512) 55 5.68 72.73 2.26 8.68
    Train (512 × 357) 155 5.49 91.70 1.63 6.36
    Mandril (256 × 256) 255 1.99 3.77 0.71 1.32
     | Show Table
    DownLoad: CSV
  • [1] J. Bai and X. C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492-2502.  doi: 10.1109/TIP.2007.904971.
    [2] S. Bonettini and V. Ruggiero, An alternating extragradient method for total variation-based image restoration from Poisson data, Inverse Problems, 27 (2011), 26pp. doi: 10.1088/0266-5611/27/9/095001.
    [3] S. BoydN. ParikhE. ChuB. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), 1-122.  doi: 10.1561/2200000016.
    [4] K. BrediesK. Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492-526.  doi: 10.1137/090769521.
    [5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97.  doi: 10.1023/B:JMIV.0000011325.36760.1e.
    [6] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.
    [7] R. ChanA. LanzaS. Morigi and F. Sgallari, An adaptive strategy for the restoration of textured images using fractional order regularization, Numer. Math. Theory Methods Appl., 6 (2013), 276-296.  doi: 10.4208/nmtma.2013.mssvm15.
    [8] T. ChanA. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.  doi: 10.1137/S1064827598344169.
    [9] H. Chang, Y. Lou, M. K. Ng and T. Zeng, Phase retrieval from incomplete magnitude information via total variation regularization, SIAM J. Sci. Comput., 38 (2016), A3672–A3695. doi: 10.1137/15M1029357.
    [10] D. ChenY. Q. Chen and D. Xue, Fractional-order total variation image denoising based on proximity algorithm, Appl. Math. Comput., 257 (2015), 537-545.  doi: 10.1016/j.amc.2015.01.012.
    [11] H. ChenJ. Song and X. C. Tai, A dual algorithm for minimization of the LLT model, Adv. Comput. Math., 31 (2009), 115-130.  doi: 10.1007/s10444-008-9097-0.
    [12] K. DabovA. FoiV. Katkovnik and K. Egiazarian, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.  doi: 10.1109/TIP.2007.901238.
    [13] D. di Serafino, G. Landi and M. Viola, ACQUIRE: An inexact iteratively reweighted norm approach for TV-based Poisson image restoration, Appl. Math. Comput., 364 (2020), 23pp. doi: 10.1016/j.amc.2019.124678.
    [14] F. Dong and Y. Chen, A fractional-order derivative based variational framework for image denoising, Inverse Probl. Imaging, 10 (2016), 27-50.  doi: 10.3934/ipi.2016.10.27.
    [15] Y. DuanY. Wang and J. Hahn, A fast augmented Lagrangian method for Euler's elastica models, Numer. Math. Theory Methods Appl., 6 (2013), 47-71.  doi: 10.4208/nmtma.2013.mssvm03.
    [16] J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, 55 (1992), 293-318.  doi: 10.1007/BF01581204.
    [17] M. Figueiredo and J. Bioucas-Dias, Restoration of Poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19 (2010), 3133-3145.  doi: 10.1109/TIP.2010.2053941.
    [18] M. Figueiredo and J. M. Bioucas-Dias, Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization, preprint, arXiv: math/0904.4868. doi: 10.1109/TIP.2010.2045029.
    [19] W. GuoJ. Qin and W. Yin, A new detail-preserving regularization scheme, SIAM J. Imaging Sci., 7 (2014), 1309-1334.  doi: 10.1137/120904263.
    [20] L. JiangJ. HuangX. G. Lv and J. Liu, Alternating direction method for the high-order total variation-based Poisson noise removal problem, Numer. Algorithms, 69 (2015), 495-516.  doi: 10.1007/s11075-014-9908-y.
    [21] S. H. Kayyar and P. Jidesh, Non-local total variation regularization approach for image restoration under a Poisson degradation, J. Modern Optics, 65 (2018), 2231-2242.  doi: 10.1080/09500340.2018.1506058.
    [22] G. Landi and E. L. Piccolomini, NPTool: A MATLAB software for nonnegative image restoration with Newton projection methods, Numer. Algorithms, 62 (2013), 487-504.  doi: 10.1007/s11075-012-9602-x.
    [23] H. Lantéri and C. Theys, Restoration of astrophysical images: The case of Poisson data with additive Gaussian noise, EURASIP J. Adv. Signal Process., 2005 (2005), 2500-2513.  doi: 10.1155/ASP.2005.2500.
    [24] T. LeR. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), 257-263.  doi: 10.1007/s10851-007-0652-y.
    [25] D. LiX. TianQ. Jin and K. Hirasawa, Adaptive fractional-order total variation image restoration with split Bregman iteration, ISA Transactions, 82 (2017), 210-222.  doi: 10.1016/j.isatra.2017.08.014.
    [26] H. Li, J. Wang and H. Dou, Second-order TGV model for Poisson noise image restoration, SpringerPlus, 5 (2016). doi: 10.1186/s40064-016-2929-3.
    [27] Y. Li, J. Qin, Y. Hsin, S. Osher and W. Liu, s-SMOOTH: Sparsity and smoothness enhanced EEG brain tomography, Frontiers Neurosci., 10 (2016). doi: 10.3389/fnins.2016.00543.
    [28] Y. Li, J. Qin, S. Osher and W. Liu, Graph fractional-order total variation EEG source reconstruction, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, 2016, 101–104. doi: 10.1109/EMBC.2016.7590650.
    [29] X. Liu, Augmented Lagrangian method for total generalized variation based Poissonian image restoration, Comput. Math. Appl., 71 (2016), 1694-1705.  doi: 10.1016/j.camwa.2016.03.005.
    [30] X. Liu and L. Huang, Total bounded variation-based Poissonian images recovery by split Bregman iteration, Math. Methods Appl. Sci., 35 (2012), 520-529.  doi: 10.1002/mma.1588.
    [31] X. G. LvJ. Lee and J. Liu, Deblurring Poisson noisy images by total variation with overlapping group sparsity, Appl. Math. Comput., 289 (2016), 132-148.  doi: 10.1016/j.amc.2016.03.029.
    [32] M. LysakerA. Lundervold and X. C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590.  doi: 10.1109/TIP.2003.819229.
    [33] J. Ma and D. Gemechu, Anisotropic total fractional order variation model in seismic data denoising, World Academy of Science, Engineering and Technology, International J. Geological and Environmental Engineering, 12 (2018), 40-44. 
    [34] L. MaT. Zeng and G. Li, Hybrid variational model for texture image restoration, East Asian J. Appl. Math., 7 (2017), 629-642.  doi: 10.4208/eajam.090217.300617a.
    [35] M. Makitalo and A. Foi, Optimal inversion of the Anscombe transformation in low-count Poisson image denoising, IEEE Trans. Image Process., 20 (2011), 99-109.  doi: 10.1109/TIP.2010.2056693.
    [36] S. OsherA. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the $H^1$, Multiscale Model. Simul., 1 (2003), 349-370.  doi: 10.1137/S1540345902416247.
    [37] Y. Pu, Fractional calculus approach to texture of digital image, Proc. 8th Int. Conf. Signal Process., Beijing, China, 2006, 1002–1006. doi: 10.1109/ICOSP.2006.345713.
    [38] Y. Pu, Fractional differential analysis for texture of digital image, J. Alg. Comput. Tech., 1 (2007), 357-380.  doi: 10.1260/174830107782424075.
    [39] Y. PuW. WangJ. ZhouY. Wang and H. Jia, Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation, Sci. China Ser. F, 51 (2008), 1319-1339.  doi: 10.1007/s11432-008-0098-x.
    [40] J. Qin and W. Guo, An efficient compressive sensing MR image reconstruction scheme, IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, 2013,306–309. doi: 10.1109/ISBI.2013.6556473.
    [41] J. Qin, F. Liu, S. Wang and J. Rosenberger, EEG source imaging based on spatial and temporal graph structures, Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, Canada, 2017, 1–6. doi: 10.1109/IPTA.2017.8310089.
    [42] J. Qin, T. Wu, Y. Li, W. Yin, S. Osher and W. Liu, Accelerated high-resolution EEG source imaging, 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 2017, 1–4. doi: 10.1109/NER.2017.8008277.
    [43] J. Qin, X. Yi and S. Weiss, A novel fluorescence microscopy image deconvolution approach, IEEE 15th International Symposium on Biomedical Imaging, Washington DC, 2018,441–444. doi: 10.1109/ISBI.2018.8363611.
    [44] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [45] J. SalmonZ. HarmanyC. A. Deledalle and R. Willett, Poisson noise reduction with non-local PCA, J. Math. Imaging Vision, 48 (2014), 279-294.  doi: 10.1007/s10851-013-0435-6.
    [46] A. Sawatzky, C. Brune, T. Kosters, F. Wubbeling and M. Burger, EM-TV methods for inverse problems with Poisson noise, in Level Set and PDE Based Reconstruction Methods in Imaging, Lecture Notes in Math., 2090, Springer, Cham, 2013, 71–142. doi: 10.1007/978-3-319-01712-9_2.
    [47] A. Sawatzky, C. Brune, J. Muller and M. Burger, Total variation processing of images with Poisson statistics, in Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, 5702, Springer, Berlin, Heidelberg, 2009,533–540. doi: 10.1007/978-3-642-03767-2_65.
    [48] S. SetzerG. Steidl and T. Teuber, Deblurring Poissonian images by split Bregman techniques, J. Vis. Commun. Image, 21 (2010), 193-199.  doi: 10.1016/j.jvcir.2009.10.006.
    [49] J. ShenS. H. Kang and T. F. Chan, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math., 63 (2002), 564-592.  doi: 10.1137/S0036139901390088.
    [50] X. C. TaiJ. Hahn and G. J. Chung, A fast algorithm for Euler's elastica model using augmented Lagrangian method, SIAM J. Imaging Sci., 4 (2011), 313-344.  doi: 10.1137/100803730.
    [51] A. N. Tikhonov, A. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Mathematics and its Applications, 328, Kluwer Academic Publishers Group, Dordrecht, 1995. doi: 10.1007/978-94-015-8480-7.
    [52] A. Ullah, W. Chen and M. A. Khan, Fracto-integer order total variation based multiplicative noise removal model, International Conference on Information Science and Technology (ICIST), Changsha, China, 2015,160–165. doi: 10.1109/ICIST.2015.7288960.
    [53] A. UllahW. Chen and M. A. Khan, A new variational approach for restoring images with multiplicative noise, Comput. Math. Appl., 71 (2016), 2034-2050.  doi: 10.1016/j.camwa.2016.03.024.
    [54] Y. VardiL. A. Shepp and L. Kaufman, A statistical model for positron emission tomography, J. Amer. Statist. Assoc., 80 (1985), 8-37.  doi: 10.1080/01621459.1985.10477119.
    [55] X. D. WangX. C. FengW. Wang and W. J. Zhang, Iterative reweighted total generalized variation based Poisson noise removal model, Appl. Math. Comput., 223 (2013), 264-277.  doi: 10.1016/j.amc.2013.07.090.
    [56] Y. WangJ. YangW. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.  doi: 10.1137/080724265.
    [57] Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.
    [58] Y. WenR. Chan and T. Zeng, Primal-dual algorithms for total variation based image restoration under Poisson noise, Sci. China Math., 59 (2016), 141-160.  doi: 10.1007/s11425-015-5079-0.
    [59] C. Wu and X. C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.  doi: 10.1137/090767558.
    [60] J. Zhang and K. Chen, A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J. Imaging Sci., 8 (2015), 2487-2518.  doi: 10.1137/14097121X.
    [61] J. ZhangR. ChenC. Deng and S. Wang, Fast linearized augmented Lagrangian method for Euler's elastica model, Numer. Math. Theory Methods Appl., 10 (2017), 98-115.  doi: 10.4208/nmtma.2017.m1611.
    [62] J. Zhang, M. Ma, Z. Wu and C. Deng, High-order total bounded variation model and its fast algorithm for Poissonian image restoration, Math. Probl. Eng., 2019, 11pp. doi: 10.1155/2019/2502731.
    [63] J. ZhangZ. Wei and L. Xiao, Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vision, 43 (2012), 39-49.  doi: 10.1007/s10851-011-0285-z.
    [64] J. ZhangZ. Wei and L. Xiao, A fast adaptive reweighted residual-feedback iterative algorithm for fractional-order total variation regularized multiplicative noise removal of partly-textured images, Signal Process., 98 (2014), 381-395.  doi: 10.1016/j.sigpro.2013.12.009.
    [65] J. ZhangZ. Wei and L. Xiao, Bi-component decomposition based hybrid regularization method for partly-textured CS-MR image reconstruction, Signal Process., 128 (2016), 274-290.  doi: 10.1016/j.sigpro.2016.04.012.
    [66] X. ZhangM. K. Ng and M. Bai, A fast algorithm for deconvolution and Poisson noise removal, J. Sci. Comput., 75 (2018), 1535-1554.  doi: 10.1007/s10915-017-0597-2.
    [67] W. Zhou and O. Li, Poisson noise removal scheme based on fourth-order PDE by alternating minimization algorithm, Abstr. Appl. Anal., 2012 (2012), 14pp. doi: 10.1155/2012/965281.
    [68] W. Zhou and Q. Li, Adaptive total variation regularization based scheme for Poisson noise removal, Math. Methods Appl. Sci., 36 (2013), 290-299.  doi: 10.1002/mma.2587.
    [69] W. Zhu and T. Chan, Image denoising using mean curvature of image surface, SIAM J. Imaging Sci., 5 (2012), 1-32.  doi: 10.1137/110822268.
  • 加载中

Figures(7)

Tables(2)

SHARE

Article Metrics

HTML views(878) PDF downloads(781) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return