[1]
|
J. Bai and X. C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492-2502.
doi: 10.1109/TIP.2007.904971.
|
[2]
|
S. Bonettini and V. Ruggiero, An alternating extragradient method for total variation-based image restoration from Poisson data, Inverse Problems, 27 (2011), 26pp.
doi: 10.1088/0266-5611/27/9/095001.
|
[3]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2011), 1-122.
doi: 10.1561/2200000016.
|
[4]
|
K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492-526.
doi: 10.1137/090769521.
|
[5]
|
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision, 20 (2004), 89-97.
doi: 10.1023/B:JMIV.0000011325.36760.1e.
|
[6]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[7]
|
R. Chan, A. Lanza, S. Morigi and F. Sgallari, An adaptive strategy for the restoration of textured images using fractional order regularization, Numer. Math. Theory Methods Appl., 6 (2013), 276-296.
doi: 10.4208/nmtma.2013.mssvm15.
|
[8]
|
T. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration, SIAM J. Sci. Comput., 22 (2000), 503-516.
doi: 10.1137/S1064827598344169.
|
[9]
|
H. Chang, Y. Lou, M. K. Ng and T. Zeng, Phase retrieval from incomplete magnitude information via total variation regularization, SIAM J. Sci. Comput., 38 (2016), A3672–A3695.
doi: 10.1137/15M1029357.
|
[10]
|
D. Chen, Y. Q. Chen and D. Xue, Fractional-order total variation image denoising based on proximity algorithm, Appl. Math. Comput., 257 (2015), 537-545.
doi: 10.1016/j.amc.2015.01.012.
|
[11]
|
H. Chen, J. Song and X. C. Tai, A dual algorithm for minimization of the LLT model, Adv. Comput. Math., 31 (2009), 115-130.
doi: 10.1007/s10444-008-9097-0.
|
[12]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image Process., 16 (2007), 2080-2095.
doi: 10.1109/TIP.2007.901238.
|
[13]
|
D. di Serafino, G. Landi and M. Viola, ACQUIRE: An inexact iteratively reweighted norm approach for TV-based Poisson image restoration, Appl. Math. Comput., 364 (2020), 23pp.
doi: 10.1016/j.amc.2019.124678.
|
[14]
|
F. Dong and Y. Chen, A fractional-order derivative based variational framework for image denoising, Inverse Probl. Imaging, 10 (2016), 27-50.
doi: 10.3934/ipi.2016.10.27.
|
[15]
|
Y. Duan, Y. Wang and J. Hahn, A fast augmented Lagrangian method for Euler's elastica models, Numer. Math. Theory Methods Appl., 6 (2013), 47-71.
doi: 10.4208/nmtma.2013.mssvm03.
|
[16]
|
J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204.
|
[17]
|
M. Figueiredo and J. Bioucas-Dias, Restoration of Poissonian images using alternating direction optimization, IEEE Trans. Image Process., 19 (2010), 3133-3145.
doi: 10.1109/TIP.2010.2053941.
|
[18]
|
M. Figueiredo and J. M. Bioucas-Dias, Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization, preprint, arXiv: math/0904.4868.
doi: 10.1109/TIP.2010.2045029.
|
[19]
|
W. Guo, J. Qin and W. Yin, A new detail-preserving regularization scheme, SIAM J. Imaging Sci., 7 (2014), 1309-1334.
doi: 10.1137/120904263.
|
[20]
|
L. Jiang, J. Huang, X. G. Lv and J. Liu, Alternating direction method for the high-order total variation-based Poisson noise removal problem, Numer. Algorithms, 69 (2015), 495-516.
doi: 10.1007/s11075-014-9908-y.
|
[21]
|
S. H. Kayyar and P. Jidesh, Non-local total variation regularization approach for image restoration under a Poisson degradation, J. Modern Optics, 65 (2018), 2231-2242.
doi: 10.1080/09500340.2018.1506058.
|
[22]
|
G. Landi and E. L. Piccolomini, NPTool: A MATLAB software for nonnegative image restoration with Newton projection methods, Numer. Algorithms, 62 (2013), 487-504.
doi: 10.1007/s11075-012-9602-x.
|
[23]
|
H. Lantéri and C. Theys, Restoration of astrophysical images: The case of Poisson data with additive Gaussian noise, EURASIP J. Adv. Signal Process., 2005 (2005), 2500-2513.
doi: 10.1155/ASP.2005.2500.
|
[24]
|
T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise, J. Math. Imaging Vision, 27 (2007), 257-263.
doi: 10.1007/s10851-007-0652-y.
|
[25]
|
D. Li, X. Tian, Q. Jin and K. Hirasawa, Adaptive fractional-order total variation image restoration with split Bregman iteration, ISA Transactions, 82 (2017), 210-222.
doi: 10.1016/j.isatra.2017.08.014.
|
[26]
|
H. Li, J. Wang and H. Dou, Second-order TGV model for Poisson noise image restoration, SpringerPlus, 5 (2016).
doi: 10.1186/s40064-016-2929-3.
|
[27]
|
Y. Li, J. Qin, Y. Hsin, S. Osher and W. Liu, s-SMOOTH: Sparsity and smoothness enhanced EEG brain tomography, Frontiers Neurosci., 10 (2016).
doi: 10.3389/fnins.2016.00543.
|
[28]
|
Y. Li, J. Qin, S. Osher and W. Liu, Graph fractional-order total variation EEG source reconstruction, 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, 2016, 101–104.
doi: 10.1109/EMBC.2016.7590650.
|
[29]
|
X. Liu, Augmented Lagrangian method for total generalized variation based Poissonian image restoration, Comput. Math. Appl., 71 (2016), 1694-1705.
doi: 10.1016/j.camwa.2016.03.005.
|
[30]
|
X. Liu and L. Huang, Total bounded variation-based Poissonian images recovery by split Bregman iteration, Math. Methods Appl. Sci., 35 (2012), 520-529.
doi: 10.1002/mma.1588.
|
[31]
|
X. G. Lv, J. Lee and J. Liu, Deblurring Poisson noisy images by total variation with overlapping group sparsity, Appl. Math. Comput., 289 (2016), 132-148.
doi: 10.1016/j.amc.2016.03.029.
|
[32]
|
M. Lysaker, A. Lundervold and X. C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process., 12 (2003), 1579-1590.
doi: 10.1109/TIP.2003.819229.
|
[33]
|
J. Ma and D. Gemechu, Anisotropic total fractional order variation model in seismic data denoising, World Academy of Science, Engineering and Technology, International J. Geological and Environmental Engineering, 12 (2018), 40-44.
|
[34]
|
L. Ma, T. Zeng and G. Li, Hybrid variational model for texture image restoration, East Asian J. Appl. Math., 7 (2017), 629-642.
doi: 10.4208/eajam.090217.300617a.
|
[35]
|
M. Makitalo and A. Foi, Optimal inversion of the Anscombe transformation in low-count Poisson image denoising, IEEE Trans. Image Process., 20 (2011), 99-109.
doi: 10.1109/TIP.2010.2056693.
|
[36]
|
S. Osher, A. Solé and L. Vese, Image decomposition and restoration using total variation minimization and the $H^1$, Multiscale Model. Simul., 1 (2003), 349-370.
doi: 10.1137/S1540345902416247.
|
[37]
|
Y. Pu, Fractional calculus approach to texture of digital image, Proc. 8th Int. Conf. Signal Process., Beijing, China, 2006, 1002–1006.
doi: 10.1109/ICOSP.2006.345713.
|
[38]
|
Y. Pu, Fractional differential analysis for texture of digital image, J. Alg. Comput. Tech., 1 (2007), 357-380.
doi: 10.1260/174830107782424075.
|
[39]
|
Y. Pu, W. Wang, J. Zhou, Y. Wang and H. Jia, Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation, Sci. China Ser. F, 51 (2008), 1319-1339.
doi: 10.1007/s11432-008-0098-x.
|
[40]
|
J. Qin and W. Guo, An efficient compressive sensing MR image reconstruction scheme, IEEE 10th International Symposium on Biomedical Imaging, San Francisco, CA, 2013,306–309.
doi: 10.1109/ISBI.2013.6556473.
|
[41]
|
J. Qin, F. Liu, S. Wang and J. Rosenberger, EEG source imaging based on spatial and temporal graph structures, Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, Canada, 2017, 1–6.
doi: 10.1109/IPTA.2017.8310089.
|
[42]
|
J. Qin, T. Wu, Y. Li, W. Yin, S. Osher and W. Liu, Accelerated high-resolution EEG source imaging, 8th International IEEE/EMBS Conference on Neural Engineering (NER), Shanghai, China, 2017, 1–4.
doi: 10.1109/NER.2017.8008277.
|
[43]
|
J. Qin, X. Yi and S. Weiss, A novel fluorescence microscopy image deconvolution approach, IEEE 15th International Symposium on Biomedical Imaging, Washington DC, 2018,441–444.
doi: 10.1109/ISBI.2018.8363611.
|
[44]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[45]
|
J. Salmon, Z. Harmany, C. A. Deledalle and R. Willett, Poisson noise reduction with non-local PCA, J. Math. Imaging Vision, 48 (2014), 279-294.
doi: 10.1007/s10851-013-0435-6.
|
[46]
|
A. Sawatzky, C. Brune, T. Kosters, F. Wubbeling and M. Burger, EM-TV methods for inverse problems with Poisson noise, in Level Set and PDE Based Reconstruction Methods in Imaging, Lecture Notes in Math., 2090, Springer, Cham, 2013, 71–142.
doi: 10.1007/978-3-319-01712-9_2.
|
[47]
|
A. Sawatzky, C. Brune, J. Muller and M. Burger, Total variation processing of images with Poisson statistics, in Computer Analysis of Images and Patterns, Lecture Notes in Computer Science, 5702, Springer, Berlin, Heidelberg, 2009,533–540.
doi: 10.1007/978-3-642-03767-2_65.
|
[48]
|
S. Setzer, G. Steidl and T. Teuber, Deblurring Poissonian images by split Bregman techniques, J. Vis. Commun. Image, 21 (2010), 193-199.
doi: 10.1016/j.jvcir.2009.10.006.
|
[49]
|
J. Shen, S. H. Kang and T. F. Chan, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math., 63 (2002), 564-592.
doi: 10.1137/S0036139901390088.
|
[50]
|
X. C. Tai, J. Hahn and G. J. Chung, A fast algorithm for Euler's elastica model using augmented Lagrangian method, SIAM J. Imaging Sci., 4 (2011), 313-344.
doi: 10.1137/100803730.
|
[51]
|
A. N. Tikhonov, A. Goncharsky, V. V. Stepanov and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems, Mathematics and its Applications, 328, Kluwer Academic Publishers Group, Dordrecht, 1995.
doi: 10.1007/978-94-015-8480-7.
|
[52]
|
A. Ullah, W. Chen and M. A. Khan, Fracto-integer order total variation based multiplicative noise removal model, International Conference on Information Science and Technology (ICIST), Changsha, China, 2015,160–165.
doi: 10.1109/ICIST.2015.7288960.
|
[53]
|
A. Ullah, W. Chen and M. A. Khan, A new variational approach for restoring images with multiplicative noise, Comput. Math. Appl., 71 (2016), 2034-2050.
doi: 10.1016/j.camwa.2016.03.024.
|
[54]
|
Y. Vardi, L. A. Shepp and L. Kaufman, A statistical model for positron emission tomography, J. Amer. Statist. Assoc., 80 (1985), 8-37.
doi: 10.1080/01621459.1985.10477119.
|
[55]
|
X. D. Wang, X. C. Feng, W. Wang and W. J. Zhang, Iterative reweighted total generalized variation based Poisson noise removal model, Appl. Math. Comput., 223 (2013), 264-277.
doi: 10.1016/j.amc.2013.07.090.
|
[56]
|
Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248-272.
doi: 10.1137/080724265.
|
[57]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[58]
|
Y. Wen, R. Chan and T. Zeng, Primal-dual algorithms for total variation based image restoration under Poisson noise, Sci. China Math., 59 (2016), 141-160.
doi: 10.1007/s11425-015-5079-0.
|
[59]
|
C. Wu and X. C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.
doi: 10.1137/090767558.
|
[60]
|
J. Zhang and K. Chen, A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution, SIAM J. Imaging Sci., 8 (2015), 2487-2518.
doi: 10.1137/14097121X.
|
[61]
|
J. Zhang, R. Chen, C. Deng and S. Wang, Fast linearized augmented Lagrangian method for Euler's elastica model, Numer. Math. Theory Methods Appl., 10 (2017), 98-115.
doi: 10.4208/nmtma.2017.m1611.
|
[62]
|
J. Zhang, M. Ma, Z. Wu and C. Deng, High-order total bounded variation model and its fast algorithm for Poissonian image restoration, Math. Probl. Eng., 2019, 11pp.
doi: 10.1155/2019/2502731.
|
[63]
|
J. Zhang, Z. Wei and L. Xiao, Adaptive fractional-order multi-scale method for image denoising, J. Math. Imaging Vision, 43 (2012), 39-49.
doi: 10.1007/s10851-011-0285-z.
|
[64]
|
J. Zhang, Z. Wei and L. Xiao, A fast adaptive reweighted residual-feedback iterative algorithm for fractional-order total variation regularized multiplicative noise removal of partly-textured images, Signal Process., 98 (2014), 381-395.
doi: 10.1016/j.sigpro.2013.12.009.
|
[65]
|
J. Zhang, Z. Wei and L. Xiao, Bi-component decomposition based hybrid regularization method for partly-textured CS-MR image reconstruction, Signal Process., 128 (2016), 274-290.
doi: 10.1016/j.sigpro.2016.04.012.
|
[66]
|
X. Zhang, M. K. Ng and M. Bai, A fast algorithm for deconvolution and Poisson noise removal, J. Sci. Comput., 75 (2018), 1535-1554.
doi: 10.1007/s10915-017-0597-2.
|
[67]
|
W. Zhou and O. Li, Poisson noise removal scheme based on fourth-order PDE by alternating minimization algorithm, Abstr. Appl. Anal., 2012 (2012), 14pp.
doi: 10.1155/2012/965281.
|
[68]
|
W. Zhou and Q. Li, Adaptive total variation regularization based scheme for Poisson noise removal, Math. Methods Appl. Sci., 36 (2013), 290-299.
doi: 10.1002/mma.2587.
|
[69]
|
W. Zhu and T. Chan, Image denoising using mean curvature of image surface, SIAM J. Imaging Sci., 5 (2012), 1-32.
doi: 10.1137/110822268.
|