[1]
|
R. N. Bracewell and A. C. Riddle, Inversion of fan-beam scans in radio astronomy, Astrophysical Journal, 150 (1967).
doi: 10.1086/149346.
|
[2]
|
K. Bredies, K. Kunisch and T. Pock, Total generalized variation, SIAM J. Imaging Sci., 3 (2010), 492-526.
doi: 10.1137/090769521.
|
[3]
|
A. Buades, B. Coll and J. M. Morel, A review of image denoising algorithms, with a new one, Multiscale Model. Simul., 4 (2005), 490-530.
doi: 10.1137/040616024.
|
[4]
|
C. Chang and C. Lin, LIBSVM: A library for support vector machines, ACM Transac. Intelligent Systems Technology (TIST), 2 (2011).
doi: 10.1145/1961189.1961199.
|
[5]
|
K. Choi, J. Wang, L. Zhu, T. S. Suh, S. Boyd and L. Xing, Compressed sensing based cone-beam computed tomography reconstruction with a first-order method, Med. Phys., 37 (2010), 5113-5125.
doi: 10.1118/1.3481510.
|
[6]
|
F. R. K. Chung, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, American Mathematical Society, Providence, RI, 1997.
doi: 10.1090/cbms/092.
|
[7]
|
S. L. Cotter, G. O. Roberts, A. M. Stuart and D. White, MCMC methods for functions: Modifying old algorithms to make them faster, Statist. Sci., 28 (2013), 424-446.
doi: 10.1214/13-STS421.
|
[8]
|
M. Dashti, K. J. H. Law, A. M. Stuart and J. Voss, MAP estimators and their consistency in Bayesian nonparametric inverse problems, Inverse Problems, 29 (2013), 27pp.
doi: 10.1088/0266-5611/29/9/095017.
|
[9]
|
A. A. Efros and T. K. Leung, Texture synthesis by non-parametric sampling, IEEE International Conference on Computer Vision, Greece, 1999, 1033-1038.
|
[10]
|
A. Elmoataz, O. Lezoray and S. Bougleux, Nonlocal discrete regularization on weighted graphs: A framework for image and manifold processing, IEEE Trans. Image Process., 17 (2008), 1047-1060.
doi: 10.1109/TIP.2008.924284.
|
[11]
|
G. B. Folland, Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1999.
|
[12]
|
A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin, Bayesian Data Analysis, Texts in Statistical Science Series, CRC Press, Boca Raton, FL, 2014.
|
[13]
|
G. Gilboa and S. Osher, Nonlocal linear image regularization and supervised segmentation, Multiscale Model. Simul., 6 (2007), 595-630.
doi: 10.1137/060669358.
|
[14]
|
G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7 (2008), 1005-1028.
doi: 10.1137/070698592.
|
[15]
|
T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[16]
|
T. Heuẞer, M. Brehm, S. Marcus, S. Sawall and M. Kachelrieẞ, CT data completion based on prior scans, IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, 2012, 2969-2976.
doi: 10.1109/NSSMIC.2012.6551679.
|
[17]
|
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems, Applied Mathematical Sciences, 160, Springer-Verlag, New York, 2005.
doi: 10.1007/b138659.
|
[18]
|
H. Kim, J. Chen, A. Wang, C. Chuang, M. Held and J. Pouliot, Non-local total-variation NLTV minimization combined with reweighted L1-norm for compressed sensing CT reconstruction, Phys. Med. Biol., 61 (2016).
doi: 10.1088/0031-9155/61/18/6878.
|
[19]
|
S. Kindermann, S. Osher and P. W. Jones, Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4 (2005), 1091-1115.
doi: 10.1137/050622249.
|
[20]
|
E. Klann, A Mumford-Shah-like method for limited data tomography with an application to electron tomography, SIAM J. Imaging Sci., 4 (2011), 1029-1048.
doi: 10.1137/100817371.
|
[21]
|
M. Lassas and S. Siltanen, Can one use total variation prior for edge-preserving Bayesian inversion?, Inverse Problems, 20 (2004), 1537-1563.
doi: 10.1088/0266-5611/20/5/013.
|
[22]
|
J. Li, A note on the Karhunen-Loève expansions for infinite-dimensional Bayesian inverse problems, Statist. Probab. Lett., 106 (2015), 1-4.
doi: 10.1016/j.spl.2015.06.025.
|
[23]
|
J. Liu, H. Ding, S. Molloi, X. Zhang and H. Gao, Nonlocal total variation based spectral CT image reconstruction, Med. Phys., 42 (2015), 3570-3570.
|
[24]
|
J. Liu, H. Ding, S. Molloi, X. Zhang and H. Gao, TICMR: Total image constrained material reconstruction via nonlocal total variation regularization for spectral CT, IEEE Trans. Medical Imaging, 35 (2016), 2578-2586.
doi: 10.1109/TMI.2016.2587661.
|
[25]
|
Y. Lou, X. Zhang, S. Osher and A. Bertozzi, Image recovery via nonlocal operators, J. Sci. Comput., 42 (2010), 185-197.
doi: 10.1007/s10915-009-9320-2.
|
[26]
|
F. Lucka, S. Pursiainen, M. Burger and C. H. Wolters, Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents, Neuroimage, 61 (2012), 1364-1382.
doi: 10.1016/j.neuroimage.2012.04.017.
|
[27]
|
F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons, Ltd., Chichester, 1986.
doi: 10.1137/1.9780898719284.
|
[28]
|
X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25 (2009), 36pp.
doi: 10.1088/0266-5611/25/12/123009.
|
[29]
|
G. Peyré, Image processing with nonlocal spectral bases, Multiscale Model. Simul., 7 (2008), 703-730.
doi: 10.1137/07068881X.
|
[30]
|
G. Peyré, S. Bougleux and L. Cohen, Non-local regularization of inverse problems, in ECCV 2008: Computer Vision, Lecture Notes in Computer Science, 5304, Springer, Berlin, Heidelberg, 2008, 57-68.
doi: 10.1007/978-3-540-88690-7_5.
|
[31]
|
E. T. Quinto, Singularities of the X-ray transform and limited data tomography in R2 and R3, SIAM J. Math. Anal., 24 (1993), 1215-1225.
doi: 10.1137/0524069.
|
[32]
|
J. Radon, Uber die bestimmug von funktionen durch ihre integralwerte laengs geweisser mannigfaltigkeiten, Berichte Saechsishe Acad. Wissenschaft. Math. Phys., Klass, 69 (1917).
|
[33]
|
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[34]
|
T. Schuster, B. Kaltenbacher, B. Hofmann and K. S. Kazimierski, Regularization Methods in Banach Spaces, Radon Series on Computational and Applied Mathematics, 10, Walter de Gruyter GmbH & Co. KG, Berlin, 2012.
doi: 10.1515/9783110255720.
|
[35]
|
W. P. Segars, G. Sturgeon, S. Mendonca, J. Grimes and B. M. W. Tsui, 4D XCAT phantom for multimodality imaging research, Med. Phys., 37 (2010), 4902-4915.
doi: 10.1118/1.3480985.
|
[36]
|
E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Phys. Med. Biol., 53 (2008).
doi: 10.1088/0031-9155/53/17/021.
|
[37]
|
A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numer., 19 (2010), 451-559.
doi: 10.1017/S0962492910000061.
|
[38]
|
S. J. Vollmer, Dimension-independent MCMC sampling for inverse problems with non-gaussian priors, SIAM/ASA J. Uncertain. Quantif., 3 (2015), 535-561.
doi: 10.1137/130929904.
|
[39]
|
S. J. Vollmer, Dimension-independent MCMC sampling for inverse problems with non-Gaussian priors, SIAM/ASA J. Uncertain. Quantif., 3 (2015), 535-561.
doi: 10.1137/130929904.
|
[40]
|
G. Wang and H. Yu, The meaning of interior tomography, Phys. Med. Biol., 58 (2013), R161-186.
doi: 10.1088/0031-9155/58/16/R161.
|
[41]
|
J. P. Ward, M. Lee, J. C. Ye and M. Unser, Interior tomography using 1D generalized total variation. Part Ⅰ: Mathematical foundation, SIAM J. Imaging Sci., 8 (2015), 226-247.
doi: 10.1137/140982428.
|
[42]
|
J. Yang, H. Yu, M. Jiang and G. Wang, High-order total variation minimization for interior tomography, Inverse Problems, 26 (2010), 29pp.
doi: 10.1088/0266-5611/26/3/035013.
|
[43]
|
Z. Yao, Z. Hu and J. Li, A TV-Gaussian prior for infinite-dimensional Bayesian inverse problems and its numerical implementations, Inverse Problems, 32 (2016), 19pp.
doi: 10.1088/0266-5611/32/7/075006.
|
[44]
|
X. Zhang, M. Burger, X. Bresson and S. Osher, Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imaging Sci., 3 (2010), 253-276.
doi: 10.1137/090746379.
|
[45]
|
X. Zhang and T. F. Chan, Wavelet inpainting by nonlocal toral variation, Inverse Probl. Imaging, 4 (2010), 191-210.
doi: 10.3934/ipi.2010.4.191.
|
[46]
|
D. Zhou and B. Schölkopf, Regularization on discrete spaces, in Joint Pattern Recognition Symposium, Lecture Notes in Computer Science, 3663, Springer, Berlin, Heidelberg, 2005,361-368.
doi: 10.1007/11550518_45.
|
[47]
|
Q. Zhou, W. Liu, J. Li and Y. M. Marzouk, An approximate empirical Bayesian method for large scale linear Gaussian inverse problems, Inverse Problems, 34 (2018), 18pp.
doi: 10.1088/1361-6420/aac287.
|