
-
Previous Article
An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition
- IPI Home
- This Issue
-
Next Article
Nonlocal TV-Gaussian prior for Bayesian inverse problems with applications to limited CT reconstruction
Factorization method for imaging a local perturbation in inhomogeneous periodic layers from far field measurements
1. | CMAP, École Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France |
2. | Center for Industrial Mathematics, University of Bremen, Bibliothekstraẞe 5, 28359 Bremen, Germany |
We analyze the Factorization method to reconstruct the geometry of a local defect in a periodic absorbing layer using almost only incident plane waves at a fixed frequency. A crucial part of our analysis relies on the consideration of the range of a carefully designed far field operator, which characterizes the geometry of the defect. We further provide some validating numerical results in a two dimensional setting.
References:
[1] |
T. Arens and N. I. Grinberg,
A complete factorization method for scattering by periodic structures, Computing, 75 (2005), 111-132.
doi: 10.1007/s00607-004-0092-0. |
[2] |
T. Arens and A. Kirsch,
The factorization method in inverse scattering from periodic structures, Inverse Problems, 19 (2003), 1195-1211.
doi: 10.1088/0266-5611/19/5/311. |
[3] |
L. Audibert, A. Girard and H. Haddar,
Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625. |
[4] |
L. Audibert and H. Haddar,
A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 20pp.
doi: 10.1088/0266-5611/30/3/035011. |
[5] |
A.-S. Bonnet-Ben Dhia, S. Fliss, C. Hazard and A. Tonnoir,
A Rellich type theorem for the Helmholtz equation in a conical domain, C. R. Math. Acad. Sci. Paris, 354 (2016), 27-32.
doi: 10.1016/j.crma.2015.10.015. |
[6] |
Y. Boukari and H. Haddar,
The factorization method applied to cracks with impedance boundary conditions, Inverse Probl. Imaging, 7 (2013), 1123-1138.
doi: 10.3934/ipi.2013.7.1123. |
[7] |
L. Bourgeois and S. Fliss,
On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 31pp.
doi: 10.1088/0266-5611/30/9/095004. |
[8] |
F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. An Introduction, Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006. |
[9] |
F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, CBMS-NSF Regional Conference Series in Applied Mathematics, 88, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
doi: 10.1137/1.9781611974461.ch1. |
[10] |
F. Cakoni, H. Haddar and T.-P. Nguyen,
New interior transmission problem applied to a single Floquet-Bloch mode imaging of local perturbations in periodic media, Inverse Problems, 35 (2019), 31pp.
doi: 10.1088/1361-6420/aaecfd. |
[11] |
D. L. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4942-3. |
[12] |
J. Elschner and G. Hu,
Inverse scattering of elastic waves by periodic structures: Uniqueness under the third or fourth kind boundary conditions, Methods Appl. Anal., 18 (2011), 215-244.
doi: 10.4310/MAA.2011.v18.n2.a6. |
[13] |
H. Haddar and T.-P. Nguyen,
Sampling methods for reconstructing the geometry of a local perturbation in unknown periodic layers, Comput. Math. Appl., 74 (2017), 2831-2855.
doi: 10.1016/j.camwa.2017.07.015. |
[14] |
G. Hu, Y. Lu and B. Zhang,
The factorization method for inverse elastic scattering from periodic structures, Inverse Problems, 29 (2013), 25pp.
doi: 10.1088/0266-5611/29/11/115005. |
[15] |
A. Kirsch and N. I. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and its Applications 36, Oxford University Press, Oxford, 2008.
doi: 10.1093/acprof:oso/9780199213535.001.0001. |
[16] |
A. Konschin and A. Lechleiter,
Reconstruction of a local perturbation in inhomogeneous periodic layers from partial near field measurements, Inverse Problems, 35 (2019), 114006.
doi: 10.1088/1361-6420/ab1c66. |
[17] |
A. Lechleiter,
Imaging of periodic dielectrics, BIT, 50 (2010), 59-83.
doi: 10.1007/s10543-010-0255-7. |
[18] |
A. Lechleiter,
The Floquet-Bloch transform and scattering from locally perturbed periodic surfaces, J. Math. Anal. Appl., 446 (2017), 605-627.
doi: 10.1016/j.jmaa.2016.08.055. |
[19] |
A. Lechleiter and D.-L. Nguyen,
Factorization method for electromagnetic inverse scattering from biperiodic structures, SIAM J. Imaging Sci., 6 (2013), 1111-1139.
doi: 10.1137/120903968. |
[20] |
D.-L. Nguyen, Spectral methods for direct and inverse scattering from periodic structures, Ph.D thesis, Ecole Polytechnique, Palaiseau, France, 2012. |
[21] |
K. Sandfort, The factorization method for inverse scattering from periodic inhomogeneous media, Ph.D thesis, Karlsruher Institut für Technologie, 2010.
doi: 10.5445/KSP/1000019400. |
[22] |
J. Sarannen and G. Vainikko, Periodic Integral and Pseudodifferential Equations, Springer, Berlin, 2002. |
[23] |
J. Sun and C. Zheng, Reconstruction of obstacles embedded in waveguides, in Recent Advances in Scientific Computing and Applications, Contemp. Math., 586, Amer. Math. Soc., Providence, RI, 2013, 341–351.
doi: 10.1090/conm/586/11652. |
[24] |
J. Yang, B. Zhang and R. Zhang,
A sampling method for the inverse transmission problem for periodic media, Inverse Problems, 28 (2012), 17pp.
doi: 10.1088/0266-5611/28/3/035004. |
show all references
References:
[1] |
T. Arens and N. I. Grinberg,
A complete factorization method for scattering by periodic structures, Computing, 75 (2005), 111-132.
doi: 10.1007/s00607-004-0092-0. |
[2] |
T. Arens and A. Kirsch,
The factorization method in inverse scattering from periodic structures, Inverse Problems, 19 (2003), 1195-1211.
doi: 10.1088/0266-5611/19/5/311. |
[3] |
L. Audibert, A. Girard and H. Haddar,
Identifying defects in an unknown background using differential measurements, Inverse Probl. Imaging, 9 (2015), 625-643.
doi: 10.3934/ipi.2015.9.625. |
[4] |
L. Audibert and H. Haddar,
A generalized formulation of the linear sampling method with exact characterization of targets in terms of farfield measurements, Inverse Problems, 30 (2014), 20pp.
doi: 10.1088/0266-5611/30/3/035011. |
[5] |
A.-S. Bonnet-Ben Dhia, S. Fliss, C. Hazard and A. Tonnoir,
A Rellich type theorem for the Helmholtz equation in a conical domain, C. R. Math. Acad. Sci. Paris, 354 (2016), 27-32.
doi: 10.1016/j.crma.2015.10.015. |
[6] |
Y. Boukari and H. Haddar,
The factorization method applied to cracks with impedance boundary conditions, Inverse Probl. Imaging, 7 (2013), 1123-1138.
doi: 10.3934/ipi.2013.7.1123. |
[7] |
L. Bourgeois and S. Fliss,
On the identification of defects in a periodic waveguide from far field data, Inverse Problems, 30 (2014), 31pp.
doi: 10.1088/0266-5611/30/9/095004. |
[8] |
F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory. An Introduction, Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006. |
[9] |
F. Cakoni, D. Colton and H. Haddar, Inverse Scattering Theory and Transmission Eigenvalues, CBMS-NSF Regional Conference Series in Applied Mathematics, 88, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2016.
doi: 10.1137/1.9781611974461.ch1. |
[10] |
F. Cakoni, H. Haddar and T.-P. Nguyen,
New interior transmission problem applied to a single Floquet-Bloch mode imaging of local perturbations in periodic media, Inverse Problems, 35 (2019), 31pp.
doi: 10.1088/1361-6420/aaecfd. |
[11] |
D. L. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences, 93, Springer, New York, 2013.
doi: 10.1007/978-1-4614-4942-3. |
[12] |
J. Elschner and G. Hu,
Inverse scattering of elastic waves by periodic structures: Uniqueness under the third or fourth kind boundary conditions, Methods Appl. Anal., 18 (2011), 215-244.
doi: 10.4310/MAA.2011.v18.n2.a6. |
[13] |
H. Haddar and T.-P. Nguyen,
Sampling methods for reconstructing the geometry of a local perturbation in unknown periodic layers, Comput. Math. Appl., 74 (2017), 2831-2855.
doi: 10.1016/j.camwa.2017.07.015. |
[14] |
G. Hu, Y. Lu and B. Zhang,
The factorization method for inverse elastic scattering from periodic structures, Inverse Problems, 29 (2013), 25pp.
doi: 10.1088/0266-5611/29/11/115005. |
[15] |
A. Kirsch and N. I. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Series in Mathematics and its Applications 36, Oxford University Press, Oxford, 2008.
doi: 10.1093/acprof:oso/9780199213535.001.0001. |
[16] |
A. Konschin and A. Lechleiter,
Reconstruction of a local perturbation in inhomogeneous periodic layers from partial near field measurements, Inverse Problems, 35 (2019), 114006.
doi: 10.1088/1361-6420/ab1c66. |
[17] |
A. Lechleiter,
Imaging of periodic dielectrics, BIT, 50 (2010), 59-83.
doi: 10.1007/s10543-010-0255-7. |
[18] |
A. Lechleiter,
The Floquet-Bloch transform and scattering from locally perturbed periodic surfaces, J. Math. Anal. Appl., 446 (2017), 605-627.
doi: 10.1016/j.jmaa.2016.08.055. |
[19] |
A. Lechleiter and D.-L. Nguyen,
Factorization method for electromagnetic inverse scattering from biperiodic structures, SIAM J. Imaging Sci., 6 (2013), 1111-1139.
doi: 10.1137/120903968. |
[20] |
D.-L. Nguyen, Spectral methods for direct and inverse scattering from periodic structures, Ph.D thesis, Ecole Polytechnique, Palaiseau, France, 2012. |
[21] |
K. Sandfort, The factorization method for inverse scattering from periodic inhomogeneous media, Ph.D thesis, Karlsruher Institut für Technologie, 2010.
doi: 10.5445/KSP/1000019400. |
[22] |
J. Sarannen and G. Vainikko, Periodic Integral and Pseudodifferential Equations, Springer, Berlin, 2002. |
[23] |
J. Sun and C. Zheng, Reconstruction of obstacles embedded in waveguides, in Recent Advances in Scientific Computing and Applications, Contemp. Math., 586, Amer. Math. Soc., Providence, RI, 2013, 341–351.
doi: 10.1090/conm/586/11652. |
[24] |
J. Yang, B. Zhang and R. Zhang,
A sampling method for the inverse transmission problem for periodic media, Inverse Problems, 28 (2012), 17pp.
doi: 10.1088/0266-5611/28/3/035004. |





[1] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[2] |
Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems and Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757 |
[3] |
Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681 |
[4] |
Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems and Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355 |
[5] |
Tielei Zhu, Jiaqing Yang, Bo Zhang. Recovering a bounded elastic body by electromagnetic far-field measurements. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022012 |
[6] |
Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025 |
[7] |
Olha Ivanyshyn. Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems and Imaging, 2007, 1 (4) : 609-622. doi: 10.3934/ipi.2007.1.609 |
[8] |
Guanghui Hu, Andreas Kirsch, Tao Yin. Factorization method in inverse interaction problems with bi-periodic interfaces between acoustic and elastic waves. Inverse Problems and Imaging, 2016, 10 (1) : 103-129. doi: 10.3934/ipi.2016.10.103 |
[9] |
Rémi Goudey. A periodic homogenization problem with defects rare at infinity. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022014 |
[10] |
Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems and Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263 |
[11] |
Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems and Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033 |
[12] |
Loc H. Nguyen, Qitong Li, Michael V. Klibanov. A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media. Inverse Problems and Imaging, 2019, 13 (5) : 1067-1094. doi: 10.3934/ipi.2019048 |
[13] |
Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026 |
[14] |
Lorenzo Audibert, Alexandre Girard, Houssem Haddar. Identifying defects in an unknown background using differential measurements. Inverse Problems and Imaging, 2015, 9 (3) : 625-643. doi: 10.3934/ipi.2015.9.625 |
[15] |
Dinh-Liem Nguyen. The factorization method for the Drude-Born-Fedorov model for periodic chiral structures. Inverse Problems and Imaging, 2016, 10 (2) : 519-547. doi: 10.3934/ipi.2016010 |
[16] |
Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022050 |
[17] |
Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems and Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951 |
[18] |
D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843 |
[19] |
Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 631-639. doi: 10.3934/dcdss.2012.5.631 |
[20] |
Roland Griesmaier, Nuutti Hyvönen, Otto Seiskari. A note on analyticity properties of far field patterns. Inverse Problems and Imaging, 2013, 7 (2) : 491-498. doi: 10.3934/ipi.2013.7.491 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]