February  2020, 14(1): 153-169. doi: 10.3934/ipi.2019068

An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition

1. 

Department of Applied Mathematics, School of Science, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

2. 

Department of Applied Mathematics and Physics, Samara National Research University, Moskovskoye Shosse 34, Samara 443086, Russia

3. 

Department of Mechanics and Mathematics, Saratov State University, Astrakhanskaya 83, Saratov 410012, Russia

4. 

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

* Corresponding author: Natalia Bondarenko

Received  June 2019 Published  November 2019

The Sturm-Liouville pencil is studied with arbitrary entire functions of the spectral parameter, contained in one of the boundary conditions. We solve the inverse problem, that consists in recovering the pencil coefficients from a part of the spectrum satisfying some conditions. Our main results are 1) uniqueness, 2) constructive solution, 3) local solvability and stability of the inverse problem. Our method is based on the reduction to the Sturm-Liouville problem without the spectral parameter in the boundary conditions. We use a special vector-functional Riesz-basis for that reduction.

Citation: Chuan-Fu Yang, Natalia Pavlovna Bondarenko, Xiao-Chuan Xu. An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Problems & Imaging, 2020, 14 (1) : 153-169. doi: 10.3934/ipi.2019068
References:
[1]

N. K. Bari, Biorthogonal systems and bases in Hilbert space, Moskov. Gos. Univ. Učenye Zapiski Matematika, 148 (1951), 69-107.   Google Scholar

[2]

G. Berkolaiko, R. Carlson, S. Fulling and P. Kuchment, Quantum Graphs and Their Applications, Contemporary Mathematics, 415, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/conm/415.  Google Scholar

[3]

P. A. BindingP. J. Browne and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Comput. Appl. Math., 148 (2002), 147-168.  doi: 10.1016/S0377-0427(02)00579-4.  Google Scholar

[4]

P. A. BindingP. J. Browne and B. A. Watson, Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl., 291 (2004), 246-261.  doi: 10.1016/j.jmaa.2003.11.025.  Google Scholar

[5]

N. P. Bondarenko, A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph, Anal. Math. Phys., 8 (2018), 155-168.  doi: 10.1007/s13324-017-0172-x.  Google Scholar

[6]

N. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Problems, 33 (2017), 19pp.  doi: 10.1088/1361-6420/aa8cb5.  Google Scholar

[7]

N. P. Bondarenko, Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with mixed boundary conditions, J. Inverse Ill-Posed Probl., 26 (2018), 1-12.  doi: 10.1515/jiip-2017-0001.  Google Scholar

[8]

N. P. Bondarenko, Inverse problem for the differential pencil on an arbitrary graph with partial information given on the coefficients, Anal. Math. Phys., 9 (2019), 1393-1409.  doi: 10.1007/s13324-018-0244-6.  Google Scholar

[9]

P. J. Browne and B. D. Sleeman, A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems, Inverse Problems, 13 (1997), 1453-1462.  doi: 10.1088/0266-5611/13/6/003.  Google Scholar

[10]

S. A. Buterin, On half inverse problem for differential pencils with the spectral parameter in boundary conditions, Tamkang J. Math., 42 (2011), 355-364.  doi: 10.5556/j.tkjm.42.2011.912.  Google Scholar

[11]

S. Buterin and M. Kuznetsova, On Borg's method for non-selfadjoint Sturm-Liouville operators, Anal. Math. Phys., (2019), 1-18.  doi: 10.1007/s13324-019-00307-9.  Google Scholar

[12]

F. CakoniD. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522.  doi: 10.1088/0266-5611/23/2/004.  Google Scholar

[13]

A. Y. Chernozhukova and G. Freiling, A uniqueness theorem for inverse spectral problems depending nonlinearly on the spectral parameter, Inverse Probl. Sci. Eng., 17 (2009), 777-785.  doi: 10.1080/17415970802538550.  Google Scholar

[14]

O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8224-8.  Google Scholar

[15]

M. V. Chugunova, Inverse spectral problem for the Sturm-Liouville operator with eigenvalue parameter dependent boundary conditions, in Operator Theory, System Theory and Related Topics, Oper. Theory Adv. Appl., 123, Birkhäuser, Basel, 2001,187-194. doi: 10.1007/978-3-0348-8247-7_8.  Google Scholar

[16]

P. Exner, J. P. Keating, P. Kuchment, T. Sunada and A. Teplyaev, Analysis on Graphs and Its Applications, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008. doi: 10.1090/pspum/077.  Google Scholar

[17]

G. Freiling and V. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers, Inc., Huntington, NY, 2001.  Google Scholar

[18]

G. Freiling and V. A. Yurko, Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Problems, 26 (2010), 17pp.  doi: 10.1088/0266-5611/26/5/055003.  Google Scholar

[19]

G. Freiling and V. Yurko, Determination of singular differential pencils from the Weyl function, Adv. Dyn. Syst. Appl., 7 (2012), 171-193.   Google Scholar

[20]

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential. Ⅱ: The case of discrete spectrum, Trans. Amer. Math. Soc., 352 (2000), 2765-2787.  doi: 10.1090/S0002-9947-99-02544-1.  Google Scholar

[21]

N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary condition, Inverse Problems, 21 (2005), 1315-1330.  doi: 10.1088/0266-5611/21/4/008.  Google Scholar

[22]

N. J. Guliyev, Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, J. Math. Phys., 60 (2019), 23pp.  doi: 10.1063/1.5048692.  Google Scholar

[23]

O. Hald, Discontinuous inverse eigenvalue problem, Commun. Pure Appl. Math., 37 (1984), 539-577.  doi: 10.1002/cpa.3160370502.  Google Scholar

[24]

H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34 (1978), 676-680.  doi: 10.1137/0134054.  Google Scholar

[25]

M. Horváth, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc., 353 (2001), 4155-4171.  doi: 10.1090/S0002-9947-01-02765-9.  Google Scholar

[26]

O. R. Hryniv and Y. V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 20 (2004), 1423-1444.  doi: 10.1088/0266-5611/20/5/006.  Google Scholar

[27]

B. M. Levitan, Inverse Sturm-Liouville problems, Nauka, Moscow, 1984,240pp.  Google Scholar

[28]

V. A. Marchenko, Sturm-Liouville operators and their applications, Izdat. Naukova Dumka, Kiev, 1977,331pp.  Google Scholar

[29]

O. Martinyuk and V. Pivovarchik, On the Hochstadt-Lieberman theorem, Inverse Problems, 26 (2010), 6pp.  doi: 10.1088/0266-5611/26/3/035011.  Google Scholar

[30]

J. R. McLaughlin and P. L. Polyakov, On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differential Equations, 107 (1994), 351-382.  doi: 10.1006/jdeq.1994.1017.  Google Scholar

[31]

J. R. McLaughlinP. L. Polyakov and P. E. Sacks, Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math., 54 (1994), 1203-1223.  doi: 10.1137/S0036139992238218.  Google Scholar

[32]

J. R. McLaughlin, P. E. Sacks and M. Somasundaram, Inverse scattering in acoustic media using interior transmission eigenvalues, in Inverse Problems in Wave Propagation, IMA Vol. Math. Appl., 90, Springer, New York, 1997,357-374. doi: 10.1007/978-1-4612-1878-4_17.  Google Scholar

[33]

A. S. Ozkan, An impulsive Sturm-Liouville problem with boundary conditions containing Herglotz-Nevanlinna type functions, Appl. Math. Inf. Sci., 9 (2015), 205-211.   Google Scholar

[34]

V. Pivovarchik, On the Hald-Gesztesy-Simon theorem, Integral Equations Operator Theory, 73 (2012), 383-393.  doi: 10.1007/s00020-012-1966-8.  Google Scholar

[35]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Pure and Applied Mathematics, 130, Academic Press, Inc. Boston, MA, 1987.  Google Scholar

[36]

L. Sakhnovich, Half-inverse problem on the finite interval, Inverse Problems, 17 (2001), 527-532.  doi: 10.1088/0266-5611/17/3/311.  Google Scholar

[37]

A. M. Sedletskii, Nonharmonic analysis, J. Math. Sci. (N. Y.), 116 (2003), 3551-3619.  doi: 10.1023/A:1024107924340.  Google Scholar

[38]

C.-T. Shieh and V. A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl., 347 (2008), 266-272.  doi: 10.1016/j.jmaa.2008.05.097.  Google Scholar

[39]

X.-C. XuC.-F. YangS. A. Buterin and V. A. Yurko, Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem, Electron. J. Qual. Theory Differ. Equ., (2019), 15pp.  doi: 10.14232/ejqtde.2019.1.38.  Google Scholar

[40]

C.-F. Yang, Inverse spectral problems for the Sturm-Liouville operator on a $d$-star graph, J. Math. Anal. Appl., 365 (2010), 742-749.  doi: 10.1016/j.jmaa.2009.12.016.  Google Scholar

[41]

C.-F. Yang and N. P. Bondarenko, Reconstruction and solvability for discontinuous Hochstadt-Lieberman problems, preprint, arXiv: 1904.10263. Google Scholar

[42]

C.-F. Yang and N. P. Bondarenko, Local solvability and stability of inverse problems for Sturm-Liouville operators with discontinuity, preprint, arXiv: 1906.06552. Google Scholar

[43]

C.-F. Yang and N. P. Bondarenko, A partial inverse problem for the Sturm-Liouville operator on the Lasso-graph, Inverse Probl. Imaging, 13 (2019), 69-79.  doi: 10.3934/ipi.2019004.  Google Scholar

[44]

C.-F. Yang and Z.-Y. Huang, A half-inverse problem with eigenparameter dependent boundary conditions, Numer. Funct. Anal. Optim., 31 (2010), 754-762.  doi: 10.1080/01630563.2010.490934.  Google Scholar

[45]

C.-F. Yang and X.-C. Xu, Ambarzumyan-type theorem with polynomially dependent eigenparameter, Math. Methods Appl. Sci., 38 (2015), 4411-4415.  doi: 10.1002/mma.3380.  Google Scholar

[46]

V. A. Yurko, An inverse problem for pencils of differential operators, Mat. Sb., 191 (2000), 137-160.  doi: 10.1070/SM2000v191n10ABEH000520.  Google Scholar

[47]

V. A. Yurko, Inverse spectral problems for differential operators on spatial networks, Uspekhi Mat. Nauk, 71 (2016), 149-196.  doi: 10.4213/rm9709.  Google Scholar

show all references

References:
[1]

N. K. Bari, Biorthogonal systems and bases in Hilbert space, Moskov. Gos. Univ. Učenye Zapiski Matematika, 148 (1951), 69-107.   Google Scholar

[2]

G. Berkolaiko, R. Carlson, S. Fulling and P. Kuchment, Quantum Graphs and Their Applications, Contemporary Mathematics, 415, American Mathematical Society, Providence, RI, 2006. doi: 10.1090/conm/415.  Google Scholar

[3]

P. A. BindingP. J. Browne and B. A. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Comput. Appl. Math., 148 (2002), 147-168.  doi: 10.1016/S0377-0427(02)00579-4.  Google Scholar

[4]

P. A. BindingP. J. Browne and B. A. Watson, Equivalence of inverse Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Math. Anal. Appl., 291 (2004), 246-261.  doi: 10.1016/j.jmaa.2003.11.025.  Google Scholar

[5]

N. P. Bondarenko, A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph, Anal. Math. Phys., 8 (2018), 155-168.  doi: 10.1007/s13324-017-0172-x.  Google Scholar

[6]

N. Bondarenko and S. Buterin, On a local solvability and stability of the inverse transmission eigenvalue problem, Inverse Problems, 33 (2017), 19pp.  doi: 10.1088/1361-6420/aa8cb5.  Google Scholar

[7]

N. P. Bondarenko, Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with mixed boundary conditions, J. Inverse Ill-Posed Probl., 26 (2018), 1-12.  doi: 10.1515/jiip-2017-0001.  Google Scholar

[8]

N. P. Bondarenko, Inverse problem for the differential pencil on an arbitrary graph with partial information given on the coefficients, Anal. Math. Phys., 9 (2019), 1393-1409.  doi: 10.1007/s13324-018-0244-6.  Google Scholar

[9]

P. J. Browne and B. D. Sleeman, A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems, Inverse Problems, 13 (1997), 1453-1462.  doi: 10.1088/0266-5611/13/6/003.  Google Scholar

[10]

S. A. Buterin, On half inverse problem for differential pencils with the spectral parameter in boundary conditions, Tamkang J. Math., 42 (2011), 355-364.  doi: 10.5556/j.tkjm.42.2011.912.  Google Scholar

[11]

S. Buterin and M. Kuznetsova, On Borg's method for non-selfadjoint Sturm-Liouville operators, Anal. Math. Phys., (2019), 1-18.  doi: 10.1007/s13324-019-00307-9.  Google Scholar

[12]

F. CakoniD. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems, 23 (2007), 507-522.  doi: 10.1088/0266-5611/23/2/004.  Google Scholar

[13]

A. Y. Chernozhukova and G. Freiling, A uniqueness theorem for inverse spectral problems depending nonlinearly on the spectral parameter, Inverse Probl. Sci. Eng., 17 (2009), 777-785.  doi: 10.1080/17415970802538550.  Google Scholar

[14]

O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2003. doi: 10.1007/978-0-8176-8224-8.  Google Scholar

[15]

M. V. Chugunova, Inverse spectral problem for the Sturm-Liouville operator with eigenvalue parameter dependent boundary conditions, in Operator Theory, System Theory and Related Topics, Oper. Theory Adv. Appl., 123, Birkhäuser, Basel, 2001,187-194. doi: 10.1007/978-3-0348-8247-7_8.  Google Scholar

[16]

P. Exner, J. P. Keating, P. Kuchment, T. Sunada and A. Teplyaev, Analysis on Graphs and Its Applications, Proc. Sympos. Pure Math., 77, Amer. Math. Soc., Providence, RI, 2008. doi: 10.1090/pspum/077.  Google Scholar

[17]

G. Freiling and V. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers, Inc., Huntington, NY, 2001.  Google Scholar

[18]

G. Freiling and V. A. Yurko, Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Problems, 26 (2010), 17pp.  doi: 10.1088/0266-5611/26/5/055003.  Google Scholar

[19]

G. Freiling and V. Yurko, Determination of singular differential pencils from the Weyl function, Adv. Dyn. Syst. Appl., 7 (2012), 171-193.   Google Scholar

[20]

F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential. Ⅱ: The case of discrete spectrum, Trans. Amer. Math. Soc., 352 (2000), 2765-2787.  doi: 10.1090/S0002-9947-99-02544-1.  Google Scholar

[21]

N. J. Guliyev, Inverse eigenvalue problems for Sturm-Liouville equations with spectral parameter linearly contained in one of the boundary condition, Inverse Problems, 21 (2005), 1315-1330.  doi: 10.1088/0266-5611/21/4/008.  Google Scholar

[22]

N. J. Guliyev, Schrödinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter, J. Math. Phys., 60 (2019), 23pp.  doi: 10.1063/1.5048692.  Google Scholar

[23]

O. Hald, Discontinuous inverse eigenvalue problem, Commun. Pure Appl. Math., 37 (1984), 539-577.  doi: 10.1002/cpa.3160370502.  Google Scholar

[24]

H. Hochstadt and B. Lieberman, An inverse Sturm-Liouville problem with mixed given data, SIAM J. Appl. Math., 34 (1978), 676-680.  doi: 10.1137/0134054.  Google Scholar

[25]

M. Horváth, On the inverse spectral theory of Schrödinger and Dirac operators, Trans. Amer. Math. Soc., 353 (2001), 4155-4171.  doi: 10.1090/S0002-9947-01-02765-9.  Google Scholar

[26]

O. R. Hryniv and Y. V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 20 (2004), 1423-1444.  doi: 10.1088/0266-5611/20/5/006.  Google Scholar

[27]

B. M. Levitan, Inverse Sturm-Liouville problems, Nauka, Moscow, 1984,240pp.  Google Scholar

[28]

V. A. Marchenko, Sturm-Liouville operators and their applications, Izdat. Naukova Dumka, Kiev, 1977,331pp.  Google Scholar

[29]

O. Martinyuk and V. Pivovarchik, On the Hochstadt-Lieberman theorem, Inverse Problems, 26 (2010), 6pp.  doi: 10.1088/0266-5611/26/3/035011.  Google Scholar

[30]

J. R. McLaughlin and P. L. Polyakov, On the uniqueness of a spherically symmetric speed of sound from transmission eigenvalues, J. Differential Equations, 107 (1994), 351-382.  doi: 10.1006/jdeq.1994.1017.  Google Scholar

[31]

J. R. McLaughlinP. L. Polyakov and P. E. Sacks, Reconstruction of a spherically symmetric speed of sound, SIAM J. Appl. Math., 54 (1994), 1203-1223.  doi: 10.1137/S0036139992238218.  Google Scholar

[32]

J. R. McLaughlin, P. E. Sacks and M. Somasundaram, Inverse scattering in acoustic media using interior transmission eigenvalues, in Inverse Problems in Wave Propagation, IMA Vol. Math. Appl., 90, Springer, New York, 1997,357-374. doi: 10.1007/978-1-4612-1878-4_17.  Google Scholar

[33]

A. S. Ozkan, An impulsive Sturm-Liouville problem with boundary conditions containing Herglotz-Nevanlinna type functions, Appl. Math. Inf. Sci., 9 (2015), 205-211.   Google Scholar

[34]

V. Pivovarchik, On the Hald-Gesztesy-Simon theorem, Integral Equations Operator Theory, 73 (2012), 383-393.  doi: 10.1007/s00020-012-1966-8.  Google Scholar

[35]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Pure and Applied Mathematics, 130, Academic Press, Inc. Boston, MA, 1987.  Google Scholar

[36]

L. Sakhnovich, Half-inverse problem on the finite interval, Inverse Problems, 17 (2001), 527-532.  doi: 10.1088/0266-5611/17/3/311.  Google Scholar

[37]

A. M. Sedletskii, Nonharmonic analysis, J. Math. Sci. (N. Y.), 116 (2003), 3551-3619.  doi: 10.1023/A:1024107924340.  Google Scholar

[38]

C.-T. Shieh and V. A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl., 347 (2008), 266-272.  doi: 10.1016/j.jmaa.2008.05.097.  Google Scholar

[39]

X.-C. XuC.-F. YangS. A. Buterin and V. A. Yurko, Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem, Electron. J. Qual. Theory Differ. Equ., (2019), 15pp.  doi: 10.14232/ejqtde.2019.1.38.  Google Scholar

[40]

C.-F. Yang, Inverse spectral problems for the Sturm-Liouville operator on a $d$-star graph, J. Math. Anal. Appl., 365 (2010), 742-749.  doi: 10.1016/j.jmaa.2009.12.016.  Google Scholar

[41]

C.-F. Yang and N. P. Bondarenko, Reconstruction and solvability for discontinuous Hochstadt-Lieberman problems, preprint, arXiv: 1904.10263. Google Scholar

[42]

C.-F. Yang and N. P. Bondarenko, Local solvability and stability of inverse problems for Sturm-Liouville operators with discontinuity, preprint, arXiv: 1906.06552. Google Scholar

[43]

C.-F. Yang and N. P. Bondarenko, A partial inverse problem for the Sturm-Liouville operator on the Lasso-graph, Inverse Probl. Imaging, 13 (2019), 69-79.  doi: 10.3934/ipi.2019004.  Google Scholar

[44]

C.-F. Yang and Z.-Y. Huang, A half-inverse problem with eigenparameter dependent boundary conditions, Numer. Funct. Anal. Optim., 31 (2010), 754-762.  doi: 10.1080/01630563.2010.490934.  Google Scholar

[45]

C.-F. Yang and X.-C. Xu, Ambarzumyan-type theorem with polynomially dependent eigenparameter, Math. Methods Appl. Sci., 38 (2015), 4411-4415.  doi: 10.1002/mma.3380.  Google Scholar

[46]

V. A. Yurko, An inverse problem for pencils of differential operators, Mat. Sb., 191 (2000), 137-160.  doi: 10.1070/SM2000v191n10ABEH000520.  Google Scholar

[47]

V. A. Yurko, Inverse spectral problems for differential operators on spatial networks, Uspekhi Mat. Nauk, 71 (2016), 149-196.  doi: 10.4213/rm9709.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[3]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[6]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[7]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[8]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[9]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[10]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[17]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[18]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[19]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (243)
  • HTML views (170)
  • Cited by (4)

[Back to Top]