[1]
|
T. A. Bubba, G. Kutyniok, M. Lassas, M. Maerz, W. Samek, S. Siltanen and V. Srinivasan, Learning the invisible: A hybrid deep learning-shearlet framework for limited angle computed tomography, Inverse Problems, 35 (2019), 064002, 38pp.
doi: 10.1088/1361-6420/ab10ca.
|
[2]
|
J. Cahill and D. G. Mixon, Robust width: A characterization of uniformly stable and robust compressed sensing, arXiv: 1408.4409.
|
[3]
|
J. Cahill, X. Chen and R. Wang, The gap between the null space property and the restricted isometry property, Linear Algebra and its Applications, 501 (2016), 363-375.
doi: 10.1016/j.laa.2016.03.022.
|
[4]
|
E. Candès and D. Donoho, Ridgelets: A key to higher-dimensional intermittency?, Phil. Trans. R. Soc. Lond. A., 357 (1999), 2495-2509.
doi: 10.1098/rsta.1999.0444.
|
[5]
|
E. Candès and D. Donoho, Recovering edges in ill-posed inverse problems: Optimality of curvelet frames, Annals of Statistics, 30 (2002), 784-842.
doi: 10.1214/aos/1028674842.
|
[6]
|
R. Clackdoyle and M. Defrise, Tomographic Reconstruction in the 21st century. Region-of-interest reconstruction from incomplete data, IEEE Signal Processing, 60 (2010), 60-80.
|
[7]
|
R. Clackdoyle, F. Noo, J. Guo and J. Roberts, Quantitative reconstruction from truncated projections in classical tomography, IEEE Trans Nuclear Science, 51 (2004), 2570-2578.
doi: 10.1109/TNS.2004.835781.
|
[8]
|
F. Colonna, G. Easley, K. Guo and D. Labate, Radon transform inversion using the shearlet representation, Appl. Comput. Harmon. Anal., 29 (2000), 232-250.
doi: 10.1016/j.acha.2009.10.005.
|
[9]
|
G. Easley, D. Labate and W. Lim, Sparse directional image representations using the discrete shearlet transform, Applied and Computational Harmonic Analysis, 25 (2008), 25-46.
doi: 10.1016/j.acha.2007.09.003.
|
[10]
|
M. Felsberg, A novel two-step method for ct reconstruction, in Bildverarbeitung für die Medizin, Springer, 2008,303–307.
doi: 10.1007/978-3-540-78640-5_61.
|
[11]
|
S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Birkhäuser Basel, 2013.
doi: 10.1007/978-0-8176-4948-7.
|
[12]
|
B. Goossens, Dataflow management, dynamic load balancing, and concurrent processing for real-time embedded vision applications using quasar, International Journal of Circuit Theory and Applications, 46 (2018), 1733-1755.
doi: 10.1002/cta.2494.
|
[13]
|
Y. Han, J. Gu and J. C. Ye, Deep learning interior tomography for region-of-interest reconstruction, arXiv preprint, arXiv: 1712.10248.
|
[14]
|
Y. Han and J. C. Ye, Framing u-net via deep convolutional framelets: Application to sparse-view ct, IEEE Transactions on Medical Imaging, 37 (2018), 1418-1429.
|
[15]
|
G. T. Herman and A. Lent, Iterative reconstruction algorithms, Computers in Biology and Medicine, 6 (1976), 273-294.
doi: 10.1016/0010-4825(76)90066-4.
|
[16]
|
M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards, 49 (1952), 409-436.
doi: 10.6028/jres.049.044.
|
[17]
|
X. Jin, A. Katsevich, H. Yu, G. Wang, L. Li and Z. Chen, Interior tomography with continuous singular value decomposition, IEEE Transactions on Medical Imaging, 31 (2012), 2108-2119.
doi: 10.1109/TMI.2012.2213304.
|
[18]
|
S. Kawata and O. Nalcioglu, Constrained iterative reconstruction by the conjugate gradient method, IEEE Transactions on Medical Imaging, 4 (1985), 65-71.
doi: 10.1109/TMI.1985.4307698.
|
[19]
|
E. Klann, E. Quinto and R. Ramlau, Wavelet methods for a weighted sparsity penalty for region of interest tomography, Inverse Problems, 31 (2015), 025001, 22pp.
doi: 10.1088/0266-5611/31/2/025001.
|
[20]
|
H. Kudo, M. Courdurier, F. Noo and M. Defrise, Tiny a priori knowledge solves the interior problem in computed tomography, Phys. Med. Biol., 53 (2008), 2207-3923.
|
[21]
|
H. Kudo, T. Suzuki and E. A. Rashed, Image reconstruction for sparse-view CT and interior CT - introduction to compressed sensing and differentiated backprojection, Quantitative Imaging in Medicine and Surgery, 3 (2013), 147.
|
[22]
|
C. Metzler, A. Maleki and R. Baraniuk, From denoising to compressed sensing, IEEE Transactions on Information Theory, 62 (2016), 5117-5144.
doi: 10.1109/TIT.2016.2556683.
|
[23]
|
F. Natterer, The Mathematics of Computerized Tomography, SIAM: Society for Industrial and Applied Mathematics, 2001.
doi: 10.1137/1.9780898719284.
|
[24]
|
F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM: Society for Industrial and Applied Mathematics, 2001.
doi: 10.1137/1.9780898718324.
|
[25]
|
F. Noo, R. Clackdoyle and J. Pack, A two-step Hilbert transform method for 2D image reconstruction, Phys. Med. Biol., 49 (2004), 3903-3923.
doi: 10.1088/0031-9155/49/17/006.
|
[26]
|
S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An interative regularization method for total variation-based image restoration, SIAM Multiscale Modeling and Simulation, 4 (2005), 460-489.
doi: 10.1137/040605412.
|
[27]
|
L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography., IEEE Trans Med Imaging, 1 (1982), 113-122.
|
[28]
|
B. Vandeghinste, B. Goossens, R. Van Holen, C. Vanhove, A. Pižurica, S. Vandenberghe and S. Staelens, Iterative CT reconstruction using shearlet-based regularization, IEEE Trans. Nuclear Science, 60 (2013), 3305-3317.
|
[29]
|
T. Würfl, F. C. Ghesu, V. Christlein and A. Maier, Deep learning computed tomography, in International conference on medical image computing and computer-assisted intervention, Springer, 2016,432–440.
|
[30]
|
Q. Xu, X. Mou, G. Wang, J. Sieren, E. Hoffman and H. Yu, Statistical interior tomography, IEEE Transactions on Medical Imaging, 30 (2011), 1116-1128.
doi: 10.1109/TMI.2011.2106161.
|
[31]
|
W. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for l1-minimization with applications to compressed sensing, SIAM Journal on Imaging Sciences, 1 (2008), 143-168.
doi: 10.1137/070703983.
|
[32]
|
D. F. Yu, J. A. Fessler and E. P. Ficaro, Maximum-likelihood transmission image reconstruction for overlapping transmission beams, IEEE Transactions on Medical Imaging, 19 (2000), 1094-1105.
doi: 10.1109/42.896785.
|
[33]
|
H. Yu, Y. Ye and G. Wang, Interior reconstruction using the truncated Hilbert transform via singular value decomposition, J. Xray Sci. Technol., 16 (2008), 243-251.
|
[34]
|
G. Zeng and G. Gullberg, Exact iterative reconstruction for the interior problem, Physics of Medical Biology, 54 (2009), 5805-5814.
|
[35]
|
B. Zhang and G. L. Zeng, Two-dimensional iterative region-of-interest (ROI) reconstruction from truncated projection data, Med. Phys., 34 (2007), 935-944.
doi: 10.1118/1.2436969.
|