• Previous Article
    Integral formulation of the complete electrode model of electrical impedance tomography
  • IPI Home
  • This Issue
  • Next Article
    Non-local blind hyperspectral image super-resolution via 4d sparse tensor factorization and low-rank
April  2020, 14(2): 363-384. doi: 10.3934/ipi.2020016

The Linear Sampling Method for Kirchhoff-Love infinite plates

1. 

Laboratoire POEMS, ENSTA ParisTech, 828 Boulevard des Maréchaux, 91120 Palaiseau, France

2. 

CEA, LIST, 91191 Gif-sur-Yvette, France

* Corresponding author: Laurent Bourgeois

Received  July 2019 Revised  October 2019 Published  February 2020

This paper addresses the problem of identifying impenetrable obstacles in a Kirchhoff-Love infinite plate from multistatic near-field data. The Linear Sampling Method is introduced in this context. We firstly prove a uniqueness result for such an inverse problem. We secondly provide the classical theoretical foundation of the Linear Sampling Method. We lastly show the feasibility of the method with the help of numerical experiments.

Citation: Laurent Bourgeois, Arnaud Recoquillay. The Linear Sampling Method for Kirchhoff-Love infinite plates. Inverse Problems & Imaging, 2020, 14 (2) : 363-384. doi: 10.3934/ipi.2020016
References:
[1]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.  doi: 10.1088/0266-5611/17/5/314.  Google Scholar

[2]

L. Bourgeois and C. Hazard, On Well-posedness of Scattering Problems in Kirchhoff-Love Infinite Plates, https://hal-ensta-paris.archives-ouvertes.fr//hal-02334004, submitted. Google Scholar

[3]

L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27pp. doi: 10.1088/0266-5611/27/5/055001.  Google Scholar

[4]

V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34pp. doi: 10.1088/1361-6420/aac21e.  Google Scholar

[5]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023. Google Scholar

[6]

C. Bernardi, Y. Maday and F. Rappetti, Discrétisations Variationnelles de Problèmes aux Limites Elliptiques, Springer-Verlag, Berlin, 2004.  Google Scholar

[7]

D. ColtonM. Le Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.  doi: 10.1088/0266-5611/13/6/005.  Google Scholar

[8]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[9]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, 2006.  Google Scholar

[10]

A. CharalambopoulosD. Gintides and K. Kiriaki, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 18 (2001), 547-558.  doi: 10.1088/0266-5611/18/3/303.  Google Scholar

[11]

F. CakoniG. Hsiao and W. Wendland, On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation, Complex Var. Theory Appl., 50 (2005), 681-696.  doi: 10.1080/02781070500087394.  Google Scholar

[12]

N. Fata and B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics, Inverse Problems, 20 (2001), 713-736.   Google Scholar

[13]

M. FarhatS. Guenneau and S. Enoch, Finite elements modelling of scattering problems for flexural waves in thin plates: application to elliptic invisibility cloaks, rotators and the mirage effect, Journal of Computational Physics, 230 (2011), 2237-2245.  doi: 10.1016/j.jcp.2010.12.009.  Google Scholar

[14]

G. Hsiao and W. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-68545-6.  Google Scholar

[15]

J.-L. Lions and E. Magenes, "Problèmes Aux Limites non Homogènes et Applications, Vol. 1", Dunod, Paris, 1968.  Google Scholar

[16]

P. Lascaux and E. Lesaint, Eléments finis non-conformes pour le problème de la flexion des plaques minces, Publications des Séminaires de Mathématiques et Informatique de Rennes, fascicule S4 "Journées éléments finis", (1974), 1-51. Google Scholar

[17]

A. Morassi and E. Rosset, Unique determination of unknown boundaries in an elastic plate by one measurement, Comptes Rendus Mécanique, 338 (2010), 450-460.  doi: 10.1016/j.crme.2010.07.011.  Google Scholar

[18]

A. MorassiE. Rosset and S. Vessella, Optimal stability in the identification of a rigid inclusion in an isotropic Kirchhoff-Love plate, SIAM J. Math. Anal., 51 (2019), 731-747.  doi: 10.1137/18M1203286.  Google Scholar

[19]

L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aero-Quart., 19 (1968), 149-169.  doi: 10.1017/S0001925900004546.  Google Scholar

[20]

M. J. A. SmithM. H. Meylan and R. C. McPhedran, Scattering by cavities of arbitrary shape in an infinite plate and associated vibration problems, Journal of Sound and Vibration, 330 (2011), 4029-4046.  doi: 10.1016/j.jsv.2011.03.019.  Google Scholar

[21]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problems and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

show all references

References:
[1]

T. Arens, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 17 (2001), 1445-1464.  doi: 10.1088/0266-5611/17/5/314.  Google Scholar

[2]

L. Bourgeois and C. Hazard, On Well-posedness of Scattering Problems in Kirchhoff-Love Infinite Plates, https://hal-ensta-paris.archives-ouvertes.fr//hal-02334004, submitted. Google Scholar

[3]

L. Bourgeois, F. Le Louër and E. Lunéville, On the use of Lamb modes in the linear sampling method for elastic waveguides, Inverse Problems, 27 (2011), 055001, 27pp. doi: 10.1088/0266-5611/27/5/055001.  Google Scholar

[4]

V. Baronian, L. Bourgeois, B. Chapuis and A. Recoquillay, Linear sampling method applied to non destructive testing of an elastic waveguide: theory, numerics and experiments, Inverse Problems, 34 (2018), 075006, 34pp. doi: 10.1088/1361-6420/aac21e.  Google Scholar

[5]

L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: A formulation based on modes, Journal of Physics: Conference Series, 135 (2008), 012023. Google Scholar

[6]

C. Bernardi, Y. Maday and F. Rappetti, Discrétisations Variationnelles de Problèmes aux Limites Elliptiques, Springer-Verlag, Berlin, 2004.  Google Scholar

[7]

D. ColtonM. Le Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse Problems, 13 (1997), 1477-1493.  doi: 10.1088/0266-5611/13/6/005.  Google Scholar

[8]

D. Colton and A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inverse Problems, 12 (1996), 383-393.  doi: 10.1088/0266-5611/12/4/003.  Google Scholar

[9]

F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, 2006.  Google Scholar

[10]

A. CharalambopoulosD. Gintides and K. Kiriaki, Linear sampling methods for 2D inverse elastic wave scattering, Inverse Problems, 18 (2001), 547-558.  doi: 10.1088/0266-5611/18/3/303.  Google Scholar

[11]

F. CakoniG. Hsiao and W. Wendland, On the boundary integral equation method for a mixed boundary value problem of the biharmonic equation, Complex Var. Theory Appl., 50 (2005), 681-696.  doi: 10.1080/02781070500087394.  Google Scholar

[12]

N. Fata and B. Guzina, A linear sampling method for near-field inverse problems in elastodynamics, Inverse Problems, 20 (2001), 713-736.   Google Scholar

[13]

M. FarhatS. Guenneau and S. Enoch, Finite elements modelling of scattering problems for flexural waves in thin plates: application to elliptic invisibility cloaks, rotators and the mirage effect, Journal of Computational Physics, 230 (2011), 2237-2245.  doi: 10.1016/j.jcp.2010.12.009.  Google Scholar

[14]

G. Hsiao and W. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-68545-6.  Google Scholar

[15]

J.-L. Lions and E. Magenes, "Problèmes Aux Limites non Homogènes et Applications, Vol. 1", Dunod, Paris, 1968.  Google Scholar

[16]

P. Lascaux and E. Lesaint, Eléments finis non-conformes pour le problème de la flexion des plaques minces, Publications des Séminaires de Mathématiques et Informatique de Rennes, fascicule S4 "Journées éléments finis", (1974), 1-51. Google Scholar

[17]

A. Morassi and E. Rosset, Unique determination of unknown boundaries in an elastic plate by one measurement, Comptes Rendus Mécanique, 338 (2010), 450-460.  doi: 10.1016/j.crme.2010.07.011.  Google Scholar

[18]

A. MorassiE. Rosset and S. Vessella, Optimal stability in the identification of a rigid inclusion in an isotropic Kirchhoff-Love plate, SIAM J. Math. Anal., 51 (2019), 731-747.  doi: 10.1137/18M1203286.  Google Scholar

[19]

L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aero-Quart., 19 (1968), 149-169.  doi: 10.1017/S0001925900004546.  Google Scholar

[20]

M. J. A. SmithM. H. Meylan and R. C. McPhedran, Scattering by cavities of arbitrary shape in an infinite plate and associated vibration problems, Journal of Sound and Vibration, 330 (2011), 4029-4046.  doi: 10.1016/j.jsv.2011.03.019.  Google Scholar

[21]

T. Tyni and V. Serov, Scattering problems for perturbations of the multidimensional biharmonic operator, Inverse Problems and Imaging, 12 (2018), 205-227.  doi: 10.3934/ipi.2018008.  Google Scholar

Figure 1.  Validation of the artificial boundary condition. Left: scattering solution computed in $ \Omega_1 $. Right: scattering solution computed in $ \Omega_2 $
Figure 2.  Function $ \Psi $ given by (32) for a Dirichlet obstacle, exact data and various wave numbers $ k $. Top left: $ k = 10 $. Top right: $ k = 20 $. Bottom: $ k = 30 $
Figure 3.  Function $ \Psi $ for a Neumann obstacle, exact data and various wave numbers $ k $. Top left: $ k = 10 $. Top right: $ k = 20 $. Bottom: $ k = 30 $
Figure 4.  Left: Function $ \Psi $ for a Dirichlet obstacle formed by 3 circles, $ k = 30 $ and exact data. Right: Function $ \Psi $ for a Neumann kite-shaped obstacle, $ k = 20 $ and exact data
Figure 5.  Function $ \Psi $ for a Dirichlet obstacle, $ k = 20 $ and noisy data. Left: noise of amplitude $ 5\% $. Right: noise of amplitude $ 10\% $
Figure 6.  Function $ \Psi $ for a Dirichlet obstacle with less (exact) data, $ k = 30 $. Left: two circles. Right: three circles
Figure 7.  Function $ \Psi $ for a Dirichlet obstacle with less data in the presence of noise, $ k = 20 $. Left: noise of amplitude $ 5\% $. Right: noise of amplitude $ 10\% $
[1]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[2]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[3]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[4]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[5]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[6]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[7]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[8]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[9]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems & Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[10]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[11]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[12]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[13]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[14]

Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264

[15]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[16]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[17]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

[18]

Benoît Pausader, Walter A. Strauss. Analyticity of the nonlinear scattering operator. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 617-626. doi: 10.3934/dcds.2009.25.617

[19]

Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems & Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487

[20]

Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098

2018 Impact Factor: 1.469

Article outline

Figures and Tables

[Back to Top]