April  2020, 14(2): 385-398. doi: 10.3934/ipi.2020017

Integral formulation of the complete electrode model of electrical impedance tomography

Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Laboratory for Intelligent Computing and Financial Technology, 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, 215123, China

Received  August 2019 Revised  November 2019 Published  February 2020

Fund Project: The author is partially supported by KSF in XJTLU.

We model electrical impedance tomography (EIT) based on the minimum energy principle. It results in a constrained minimization problem in terms of current density. The new formulation is proved to have a unique solution within appropriate function spaces. By characterizing its solution with the Lagrange multiplier method, we relate the new formulation to the so-called shunt model and the complete electrode model (CEM) of EIT. Based on the new formulation, we also propose a new numerical method to solve the forward problem of EIT. The new solver is formulated in terms of current. It was shown to give similar results to that of the traditional finite element method, with simulations on a 2D EIT model.

Citation: Erfang Ma. Integral formulation of the complete electrode model of electrical impedance tomography. Inverse Problems & Imaging, 2020, 14 (2) : 385-398. doi: 10.3934/ipi.2020017
References:
[1]

K. S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924.   Google Scholar

[2]

P. G. Ciarlet, The Finite Element Method For Elliptic Problems, 2$^{nd}$ edition, SIAM, Philadelphia, 2002.  Google Scholar

[3]

J. Dardé and S. Staboulis, Electrode modelling: The effect of contact impedance, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 415-431.  doi: 10.1051/m2an/2015049.  Google Scholar

[4]

V. Girault and P. Raviart, Finite Element Methods For Navier-Stokes Equations: Theory and Algorithms, 1$^{st}$ edition, Springer-Verlag, Berlin Heidelberg, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[5]

N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions, SIAM Journal on Applied Mathematics, 64 (2004), 902-931.  doi: 10.1137/S0036139903423303.  Google Scholar

[6]

N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM Journal on Applied Mathematics, 77 (2017), 2250-2271.  doi: 10.1137/17M1124292.  Google Scholar

[7]

P. O. Persson and G. Strang, A simple mesh generator in matlab, SIAM Review, 46 (2004), 329-345.  doi: 10.1137/S0036144503429121.  Google Scholar

[8]

M. PidcockS. Ciulli and S. Ispas, Singuarities of mixed boundary value problems in electrical impedance tomography, Physiological Measurement, 16 (1995), 213-218.   Google Scholar

[9]

E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.  doi: 10.1137/0152060.  Google Scholar

[10]

R. Winkler and A. Rieder, Resolution-controlled conductivity discretization in electrical impedance tomography, SIAM Journal on Imaging Sciences, 7 (2014), 2048-2077.  doi: 10.1137/140958955.  Google Scholar

[11] A. Zangwill, Modern Electrodynamics, 1$^{st}$ edition, Cambridge University Press, 2013.   Google Scholar
[12]

E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications, 1$^{st}$ edition, Springer-Verlag, New York, 1995.  Google Scholar

show all references

References:
[1]

K. S. ChengD. IsaacsonJ. C. Newell and D. G. Gisser, Electrode models for electric current computed tomography, IEEE Transactions on Biomedical Engineering, 36 (1989), 918-924.   Google Scholar

[2]

P. G. Ciarlet, The Finite Element Method For Elliptic Problems, 2$^{nd}$ edition, SIAM, Philadelphia, 2002.  Google Scholar

[3]

J. Dardé and S. Staboulis, Electrode modelling: The effect of contact impedance, ESAIM: Mathematical Modelling and Numerical Analysis, 50 (2016), 415-431.  doi: 10.1051/m2an/2015049.  Google Scholar

[4]

V. Girault and P. Raviart, Finite Element Methods For Navier-Stokes Equations: Theory and Algorithms, 1$^{st}$ edition, Springer-Verlag, Berlin Heidelberg, 1986. doi: 10.1007/978-3-642-61623-5.  Google Scholar

[5]

N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions, SIAM Journal on Applied Mathematics, 64 (2004), 902-931.  doi: 10.1137/S0036139903423303.  Google Scholar

[6]

N. Hyvönen and L. Mustonen, Smoothened complete electrode model, SIAM Journal on Applied Mathematics, 77 (2017), 2250-2271.  doi: 10.1137/17M1124292.  Google Scholar

[7]

P. O. Persson and G. Strang, A simple mesh generator in matlab, SIAM Review, 46 (2004), 329-345.  doi: 10.1137/S0036144503429121.  Google Scholar

[8]

M. PidcockS. Ciulli and S. Ispas, Singuarities of mixed boundary value problems in electrical impedance tomography, Physiological Measurement, 16 (1995), 213-218.   Google Scholar

[9]

E. SomersaloM. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM Journal on Applied Mathematics, 52 (1992), 1023-1040.  doi: 10.1137/0152060.  Google Scholar

[10]

R. Winkler and A. Rieder, Resolution-controlled conductivity discretization in electrical impedance tomography, SIAM Journal on Imaging Sciences, 7 (2014), 2048-2077.  doi: 10.1137/140958955.  Google Scholar

[11] A. Zangwill, Modern Electrodynamics, 1$^{st}$ edition, Cambridge University Press, 2013.   Google Scholar
[12]

E. Zeidler, Applied Functional Analysis: Main Principles and Their Applications, 1$^{st}$ edition, Springer-Verlag, New York, 1995.  Google Scholar

Figure 1.  The layer of contact impedance for the $ i $-th electrode
Figure 2.  A toy 2D EIT model
Figure 3.  An unstructured mesh over the disk
Figure 4.  Potential distributin estimated by the current-based solver (Left) and the traditional potential-based solver (Right)
Figure 5.  Non-uniform conductivity distribution. Black region has conductivity 0.1 S/m. Gray region has conductivity 0.3 S/m. Other parts of the region has conductivity 1 S/m
Figure 6.  Distribution of current densities estimated by the current-based solver (Left) and the traditional potential-based solver (Right)
Figure 7.  The conformal mapping
[1]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[2]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[3]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[4]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[5]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[6]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[7]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[8]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[9]

Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021012

[10]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[11]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[12]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[13]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[14]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[15]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[16]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[17]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[18]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[19]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[20]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (194)
  • HTML views (171)
  • Cited by (1)

Other articles
by authors

[Back to Top]