April  2020, 14(2): 399-399. doi: 10.3934/ipi.2020018

Corrigendum to "Incorporating structural prior information and sparsity into EIT using parallel level sets"

1. 

Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland

2. 

Institute for Mathematical Innovation, University of Bath, Bath BA2 7AY, UK

3. 

Centre for Medical Image Computing, University College London, Gower Street, London, WC1E 6BT, UK

* Corresponding author: Ville Kolehmainen

Published  February 2020

The copyright of the paper entitled "Incorporating structural prior information and sparsity into EIT using parallel level sets" [1] was originally owned by American Institute of Mathematical Sciences (AIMS, LLC) when it was published online in IPI Volume 13, Issue 2, April 2019 regular issue. The authors of this paper [1] paid the Open Access fee after the paper was published.

The paper entitled "Incorporating structural prior information and sparsity into EIT using parallel level sets" [1] is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Citation: Ville Kolehmainen, Matthias J. Ehrhardt, Simon R. Arridge. Corrigendum to "Incorporating structural prior information and sparsity into EIT using parallel level sets". Inverse Problems & Imaging, 2020, 14 (2) : 399-399. doi: 10.3934/ipi.2020018
References:
[1]

V. KolehmainenM. J. Ehrhardt and S. R. Arridge, Incorporating structural prior information and sparsity into EIT using parallel level sets, Inverse Problems & Imaging, 13 (2019), 285-307.  doi: 10.3934/ipi.2019015.  Google Scholar

show all references

References:
[1]

V. KolehmainenM. J. Ehrhardt and S. R. Arridge, Incorporating structural prior information and sparsity into EIT using parallel level sets, Inverse Problems & Imaging, 13 (2019), 285-307.  doi: 10.3934/ipi.2019015.  Google Scholar

[1]

Ville Kolehmainen, Matthias J. Ehrhardt, Simon R. Arridge. Incorporating structural prior information and sparsity into EIT using parallel level sets. Inverse Problems & Imaging, 2019, 13 (2) : 285-307. doi: 10.3934/ipi.2019015

[2]

Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495

[3]

Melody Alsaker, Jennifer L. Mueller. Use of an optimized spatial prior in D-bar reconstructions of EIT tank data. Inverse Problems & Imaging, 2018, 12 (4) : 883-901. doi: 10.3934/ipi.2018037

[4]

Jutta Bikowski, Jennifer L. Mueller. 2D EIT reconstructions using Calderon's method. Inverse Problems & Imaging, 2008, 2 (1) : 43-61. doi: 10.3934/ipi.2008.2.43

[5]

Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417

[6]

Suresh P. Sethi, Houmin Yan, H. Y. Zhang. Corrigendum. Journal of Industrial & Management Optimization, 2005, 1 (4) : 588-588. doi: 10.3934/jimo.2005.1.588

[7]

Fanghua Lin, Dan Liu. On the Betti numbers of level sets of solutions to elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4517-4529. doi: 10.3934/dcds.2016.36.4517

[8]

Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial & Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513

[9]

Bart Goossens, Demetrio Labate, Bernhard G Bodmann. Robust and stable region-of-interest tomographic reconstruction using a robust width prior. Inverse Problems & Imaging, 2020, 14 (2) : 291-316. doi: 10.3934/ipi.2020013

[10]

Sang-Heon Lee. Development of concurrent structural decentralised discrete event system using bisimulation concept. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 305-317. doi: 10.3934/naco.2016013

[11]

Marc Kessböhmer, Bernd O. Stratmann. On the asymptotic behaviour of the Lebesgue measure of sum-level sets for continued fractions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2437-2451. doi: 10.3934/dcds.2012.32.2437

[12]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[13]

François Hamel, Régis Monneau, Jean-Michel Roquejoffre. Asymptotic properties and classification of bistable fronts with Lipschitz level sets. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 75-92. doi: 10.3934/dcds.2006.14.75

[14]

Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 519-548. doi: 10.3934/naco.2013.3.519

[15]

A. Zeblah, Y. Massim, S. Hadjeri, A. Benaissa, H. Hamdaoui. Optimization for series-parallel continuous power systems with buffers under reliability constraints using ant colony. Journal of Industrial & Management Optimization, 2006, 2 (4) : 467-479. doi: 10.3934/jimo.2006.2.467

[16]

Giovanni Alessandrini, Maarten V. de Hoop, Romina Gaburro, Eva Sincich. EIT in a layered anisotropic medium. Inverse Problems & Imaging, 2018, 12 (3) : 667-676. doi: 10.3934/ipi.2018028

[17]

Harish Garg. Solving structural engineering design optimization problems using an artificial bee colony algorithm. Journal of Industrial & Management Optimization, 2014, 10 (3) : 777-794. doi: 10.3934/jimo.2014.10.777

[18]

Bin Yu. Regular level sets of Lyapunov graphs of nonsingular Smale flows on 3-manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1277-1290. doi: 10.3934/dcds.2011.29.1277

[19]

Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235

[20]

Xi-Nan Ma, Jiang Ye, Yun-Hua Ye. Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $R^3$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 225-243. doi: 10.3934/cpaa.2011.10.225

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (70)
  • HTML views (98)
  • Cited by (0)

[Back to Top]