[1]
|
E. Beretta, M. V. de Hoop, F. Faucher and O. Scherzer, Inverse boundary value problem for the Helmholtz equation: Quantitative conditional Lipschitz stability estimates, SIAM J. Math. Anal., 48 (2016), 3962-3983.
doi: 10.1137/15M1043856.
|
[2]
|
M. Bergounioux, M. Haddou, M. Hintermüller and K. Kunisch, A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems, SIAM J. Optim., 11 (2000), 495-521.
doi: 10.1137/S1052623498343131.
|
[3]
|
M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems, SIAM J. Optim., 37 (1999), 1176-1194.
doi: 10.1137/S0363012997328609.
|
[4]
|
L. Borcea, Electrical impedance tomography, Inverse Problems 18 (2002), R99–R136.
doi: 10.1088/0266-5611/18/6/201.
|
[5]
|
M. Burger and W. Mühlhuber, Iterative regularization of parameter identification problems by sequential quadratic programming methods, Inverse Problems, 18 (2002), 943-969.
doi: 10.1088/0266-5611/18/4/301.
|
[6]
|
M. Burger and W. Mühlhuber, Numerical approximation of an SQP-type method for parameter identification, SIAM J. Numer. Anal., 40 (2002), 1775-1797.
doi: 10.1137/S0036142901389980.
|
[7]
|
C. Burstedde, On the numerical evaluation of fractional Sobolev norms, Comm. Pure Appl. Anal., 6 (2007), 587-605.
doi: 10.3934/cpaa.2007.6.587.
|
[8]
|
T. F. Coleman and Y. Li, A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables, SIAM J. Optim., 6 (1996), 1040-1058.
doi: 10.1137/S1052623494240456.
|
[9]
|
M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim., 13 (2003), 865-888.
doi: 10.1137/S1052623401383558.
|
[10]
|
P. Hungerländer and F. Rendl, A feasible active set method for strictly convex quadratic problems with simple bounds, SIAM J. Optim., 25 (2015), 1633-1659.
doi: 10.1137/140984439.
|
[11]
|
P. Hungerländer and F. Rendl, An infeasible active set method with combinatorial line search for convex quadratic problems with bound constraints, http://www.optimization-online.org/DB_HTML/2016/09/5644.html, J. Global Optim., (2018).
|
[12]
|
V. Isakov, Inverse Problems for Partial Differential Equations, 2nd Edition, Springer, New York, 2006.
|
[13]
|
J. J. Júdice and F. M. Pires, A block principal pivoting algorithm for large-scale strictly monotone linear complementarity problems, Comput. Oper. Res., 21 (1994), 587-596.
doi: 10.1016/0305-0548(94)90106-6.
|
[14]
|
B. Kaltenbacher, Regularization based on all-at-once formulations for inverse problems, SIAM J. Numer. Anal., 54 (2016), 2594-2618.
doi: 10.1137/16M1060984.
|
[15]
|
B. Kaltenbacher, Minimization based formulations of inverse problems and their regularization, SIAM J. Optim., 28 (2018), 620-645.
doi: 10.1137/17M1124036.
|
[16]
|
S. Kindermann, Convergence of the gradient method for ill-posed problems, Inverse Probl. Imaging, 11 (2017), 703-720.
doi: 10.3934/ipi.2017033.
|
[17]
|
I. Knowles, A variational algorithm for electrical impedance tomography, Inverse Problems, 14 (1998), 1513-1525.
doi: 10.1088/0266-5611/14/6/010.
|
[18]
|
R. V. Kohn and A. McKenney, Numerical implementation of a variational method for electrical impedance tomography, Inverse Problems, 6 (1990), 389-414.
doi: 10.1088/0266-5611/6/3/009.
|
[19]
|
R. V. Kohn and M. Vogelius, Relaxation of a variational method for impedance computed tomography, Comm. Pure Appl. Math., 40 (1987), 745-777.
doi: 10.1002/cpa.3160400605.
|
[20]
|
K. Kunisch and F. Rendl, An infeasible active set method for quadratic problems with simple bounds, SIAM J. Optim., 14 (2003), 35-52.
doi: 10.1137/S1052623400376135.
|