• Previous Article
    Robust reconstruction of fluorescence molecular tomography with an optimized illumination pattern
  • IPI Home
  • This Issue
  • Next Article
    Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency
June  2020, 14(3): 511-533. doi: 10.3934/ipi.2020024

Statistical characterization of scattering delay in synthetic aperture radar imaging

Department of Mathematics, North Carolina State University, Campus Box 8205, Raleigh, NC 27695, USA

* Corresponding author: Mikhail Gilman

Received  September 2019 Revised  December 2019 Published  March 2020

Distinguishing between the instantaneous and delayed scatterers in synthetic aperture radar (SAR) images is important for target identification and characterization. To perform this task, one can use the autocorrelation analysis of coordinate-delay images. However, due to the range-delay ambiguity the difference in the correlation properties between the instantaneous and delayed targets may be small. Moreover, the reliability of discrimination is affected by speckle, which is ubiquitous in SAR images, and requires statistical treatment.

Previously, we have developed a maximum likelihood based approach for discriminating between the instantaneous and delayed targets in SAR images. To test it, we employed simple statistical models. They allowed us to simulate ensembles of images that depend on various parameters, including aperture width and target contrast.

In the current paper, we enhance our previously developed methodology by establishing confidence levels for the discrimination between the instantaneous and delayed scatterers. Our procedure takes into account the difference in thresholds for different target contrasts without making any assumptions about the statistics of those contrasts.

Citation: Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems and Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024
References:
[1]

J. C. Allen and S. L. Hobbs, Spectral estimation of non-stationary white noise, J. Franklin Inst. B, 334 (1997), 99-116.  doi: 10.1016/S0016-0032(96)00060-9.

[2]

M. Basu, Gaussian-based edge-detection methods–a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 32 (2002), 252-260.  doi: 10.1109/TSMCC.2002.804448.

[3]

C. M. Bishop, Pattern Recognition and Machine Learning, Information Science and Statistics, Springer, New York, 2006.

[4]

B. Borden, Dispersive scattering for radar-based target classification and duct-induced image artifact mitigation, NATO Symposium on Non-Cooperative Air Target Identfication Using Radar, Mannheim, Germany, 1998, 14.1–14.7.

[5]

J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (1986), 679-698.  doi: 10.1109/TPAMI.1986.4767851.

[6]

S. Chen and H. Wang, SAR target recognition based on deep learning, 2014 International Conference on Data Science and Advanced Analytics (DSAA), IEEE, Shanghai, China, 2014, 541–547. doi: 10.1109/DSAA.2014.7058124.

[7]

V. C. Chen and H. Ling, Time-Frequency Transforms for Radar Imaging and Signal Analysis, Artech House Radar Library, Artech House, Norwood, MA, 2002.

[8]

M. Cheney and B. Borden, Fundamentals of Radar Imaging, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 79, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719291.

[9]

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, (eds.). NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.24 of 2019-09-15.

[10]

M. Ferrara, A. Homan and M. Cheney, Hyperspectral SAR, IEEE Trans. Geoscience and Remote Sensing, 55 (2017), 1682–1695. doi: 10.1109/TGRS.2016.2629265.

[11]

J. Garnier and K. Sølna, A multiscale approach to synthetic aperture radar in dispersive random media, Inverse Problems, 29 (2013), 054006, (18pp). doi: 10.1088/0266-5611/29/5/054006.

[12]

M. Gilman and S. Tsynkov, Mathematical analysis of SAR imaging through a turbulent ionosphere, Application of Mathematics in Technical and Natural Sciences: 9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences– AMiTaNS'17, Vol. 1895, AIP Conference Proceedings, Albena, Bulgaria, 2017, 020003 (23pp). doi: 10.1063/1.5007357.

[13]

M. Gilman, E. Smith and S. Tsynkov, Transionospheric Synthetic Aperture Imaging, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, Switzerland, 2017. doi: 10.1007/978-3-319-52127-5.

[14]

M. Gilman and S. Tsynkov, Detection of delayed target response in SAR, Inverse Problems, 35 (2019), 085005, (38pp). doi: 10.1088/1361-6420/ab1c80.

[15]

J. W. Goodman, Statistical properties of laser speckle patterns, Topics in Applied Physics: Laser Speckle and Related Phenomena (ed. J. C. Dainty, ), Vol. 9, Springer-Verlag, Berlin, 1984, 9–75.

[16]

T. Hastie, R. Tibshirani and J. Friedman, The Elements Of Statistical Learning. Data Mining, Inference, and Prediction, 2$^nd$ edition, Springer Series in Statistics, Springer, New York, 2009. doi: 10.1007/978-0-387-84858-7.

[17]

A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25, Curran Associates, Inc., 2012, 1097–1105.

[18]

D. Marr and E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond. B, 207 (1980), 187-217.  doi: 10.1098/rspb.1980.0020.

[19] W. Mendenhall and R. L. Scheaffer, Mathematical Statistics with Applications, Duxbury Press, North Scituate, Mass., 1973. 
[20]

F. J. MeyerK. ChotooS. D. ChotooB. D. Huxtable and C. S. Carrano, The influence of equatorial scintillation on L-band SAR image quality and phase, IEEE Trans. Geoscience and Remote Sensing, 54 (2016), 869-880.  doi: 10.1109/TGRS.2015.2468573.

[21]

D. MishkinN. Sergievskiy and J. Matas, Systematic evaluation of convolution neural network advances on the Imagenet, Computer Vision and Image Understanding, 161 (2017), 11-19.  doi: 10.1016/j.cviu.2017.05.007.

[22]

A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Dover Publications, Inc., Mineola, NY, 2007.

[23]

C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech House Remote Sensing Library, Artech House, Boston, 1988.

[24]

S. M. Rytov, Y. A. Kravtsov and V. I. Tatarskii, Principles of Statistical Radiophysics, Volume 4. Wave Propagation Through Random Media, Springer-Verlag, Berlin, 1989.

[25]

T. Scarnati and B. Lewis, A deep learning approach to the synthetic and measured paired and labeled experiment (SAMPLE) challenge problem, Algorithms for Synthetic Aperture Radar Imagery XXVI, 10987 (2019), 109870G. doi: 10.1117/12.2523458.

[26]

F. T. Ulaby and M. C. Dobson, Handbook of Radar Scattering Statistics for Terrain, Artech House Remote Sensing Library, Artech House, Norwood, MA, USA, 1989.

[27]

X. X. ZhuD. TuiaL. MouG.-S. XiaL. ZhangF. Xu and F. Fraundorfer, Deep learning in remote sensing: A comprehensive review and list of resources, IEEE Geoscience and Remote Sensing Magazine, 5 (2017), 8-36.  doi: 10.1109/MGRS.2017.2762307.

[28]

D. Ziou and S. Tabbone, et al., Edge detection techniques-an overview, Pattern Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 8 (1998), 537-559.

show all references

References:
[1]

J. C. Allen and S. L. Hobbs, Spectral estimation of non-stationary white noise, J. Franklin Inst. B, 334 (1997), 99-116.  doi: 10.1016/S0016-0032(96)00060-9.

[2]

M. Basu, Gaussian-based edge-detection methods–a survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 32 (2002), 252-260.  doi: 10.1109/TSMCC.2002.804448.

[3]

C. M. Bishop, Pattern Recognition and Machine Learning, Information Science and Statistics, Springer, New York, 2006.

[4]

B. Borden, Dispersive scattering for radar-based target classification and duct-induced image artifact mitigation, NATO Symposium on Non-Cooperative Air Target Identfication Using Radar, Mannheim, Germany, 1998, 14.1–14.7.

[5]

J. Canny, A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (1986), 679-698.  doi: 10.1109/TPAMI.1986.4767851.

[6]

S. Chen and H. Wang, SAR target recognition based on deep learning, 2014 International Conference on Data Science and Advanced Analytics (DSAA), IEEE, Shanghai, China, 2014, 541–547. doi: 10.1109/DSAA.2014.7058124.

[7]

V. C. Chen and H. Ling, Time-Frequency Transforms for Radar Imaging and Signal Analysis, Artech House Radar Library, Artech House, Norwood, MA, 2002.

[8]

M. Cheney and B. Borden, Fundamentals of Radar Imaging, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 79, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2009. doi: 10.1137/1.9780898719291.

[9]

F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, (eds.). NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/, Release 1.0.24 of 2019-09-15.

[10]

M. Ferrara, A. Homan and M. Cheney, Hyperspectral SAR, IEEE Trans. Geoscience and Remote Sensing, 55 (2017), 1682–1695. doi: 10.1109/TGRS.2016.2629265.

[11]

J. Garnier and K. Sølna, A multiscale approach to synthetic aperture radar in dispersive random media, Inverse Problems, 29 (2013), 054006, (18pp). doi: 10.1088/0266-5611/29/5/054006.

[12]

M. Gilman and S. Tsynkov, Mathematical analysis of SAR imaging through a turbulent ionosphere, Application of Mathematics in Technical and Natural Sciences: 9th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences– AMiTaNS'17, Vol. 1895, AIP Conference Proceedings, Albena, Bulgaria, 2017, 020003 (23pp). doi: 10.1063/1.5007357.

[13]

M. Gilman, E. Smith and S. Tsynkov, Transionospheric Synthetic Aperture Imaging, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, Switzerland, 2017. doi: 10.1007/978-3-319-52127-5.

[14]

M. Gilman and S. Tsynkov, Detection of delayed target response in SAR, Inverse Problems, 35 (2019), 085005, (38pp). doi: 10.1088/1361-6420/ab1c80.

[15]

J. W. Goodman, Statistical properties of laser speckle patterns, Topics in Applied Physics: Laser Speckle and Related Phenomena (ed. J. C. Dainty, ), Vol. 9, Springer-Verlag, Berlin, 1984, 9–75.

[16]

T. Hastie, R. Tibshirani and J. Friedman, The Elements Of Statistical Learning. Data Mining, Inference, and Prediction, 2$^nd$ edition, Springer Series in Statistics, Springer, New York, 2009. doi: 10.1007/978-0-387-84858-7.

[17]

A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25, Curran Associates, Inc., 2012, 1097–1105.

[18]

D. Marr and E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond. B, 207 (1980), 187-217.  doi: 10.1098/rspb.1980.0020.

[19] W. Mendenhall and R. L. Scheaffer, Mathematical Statistics with Applications, Duxbury Press, North Scituate, Mass., 1973. 
[20]

F. J. MeyerK. ChotooS. D. ChotooB. D. Huxtable and C. S. Carrano, The influence of equatorial scintillation on L-band SAR image quality and phase, IEEE Trans. Geoscience and Remote Sensing, 54 (2016), 869-880.  doi: 10.1109/TGRS.2015.2468573.

[21]

D. MishkinN. Sergievskiy and J. Matas, Systematic evaluation of convolution neural network advances on the Imagenet, Computer Vision and Image Understanding, 161 (2017), 11-19.  doi: 10.1016/j.cviu.2017.05.007.

[22]

A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Dover Publications, Inc., Mineola, NY, 2007.

[23]

C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech House Remote Sensing Library, Artech House, Boston, 1988.

[24]

S. M. Rytov, Y. A. Kravtsov and V. I. Tatarskii, Principles of Statistical Radiophysics, Volume 4. Wave Propagation Through Random Media, Springer-Verlag, Berlin, 1989.

[25]

T. Scarnati and B. Lewis, A deep learning approach to the synthetic and measured paired and labeled experiment (SAMPLE) challenge problem, Algorithms for Synthetic Aperture Radar Imagery XXVI, 10987 (2019), 109870G. doi: 10.1117/12.2523458.

[26]

F. T. Ulaby and M. C. Dobson, Handbook of Radar Scattering Statistics for Terrain, Artech House Remote Sensing Library, Artech House, Norwood, MA, USA, 1989.

[27]

X. X. ZhuD. TuiaL. MouG.-S. XiaL. ZhangF. Xu and F. Fraundorfer, Deep learning in remote sensing: A comprehensive review and list of resources, IEEE Geoscience and Remote Sensing Magazine, 5 (2017), 8-36.  doi: 10.1109/MGRS.2017.2762307.

[28]

D. Ziou and S. Tabbone, et al., Edge detection techniques-an overview, Pattern Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 8 (1998), 537-559.

Figure 1.  Plots of $ \left\langle{|I_t|^2}\right\rangle $ and $ \left\langle{|I_s|^2}\right\rangle $ for different values of $ \zeta_{\max} $ and $ \kappa $, see (39) and (27). The dashed lines passing through the origin indicate the ambiguity direction, see (14), (18). For the middle row of plots, the condition $ \kappa \zeta_{\max} \gtrsim 20 $ (see (40)) is satisfied, and the difference in the orientation of the parallelogram-shaped level lines is more apparent than for the top and bottom rows
Figure 2.  Simulated coordinate-delay SAR images with different contrasts. We use $ \kappa = 2.5 $ and $ \zeta_{\max} = 5\pi $, which corresponds to the middle row in Fig. 1. To build each image, we sample $ \zeta_\text{d} $ and $ \psi_\text{d} $ with a step of $ \pi $ each, and for every $ \zeta_\text{d} $ (i.e., each ambiguity line) generate the multivariate circular Gaussian image components according to (36) with the weights $ \sigma^2_ \alpha K_ \alpha $ calculated via (43). The total images are then computed according to the appropriate expression in (42). Simulation of multivariate normal random variables is performed using the $ \text{MATLAB}^© $ function $\mathtt{mvnpdf}$
Figure 3.  Cumulative distribution functions (cdf) for ensembles generated from the s-model and t-model. (a) Examples of cdfs for $ \log \breve p_s $ and $ \log \breve p_t $, see (54). The notations $ \text{cdf}_s[\ldots] $ and $ \text{cdf}_t[\ldots] $ are similar to those in (60). (b) Examples of cdfs for $ l = \log \breve p_t - \log \breve p_s $, see (55) and (60). According to (61) (see also Table 1(a)), we have $ r_t = \text{cdf}_t(0; q) $ and $ r_s = 1- \text{cdf}_s(0; q) $. (c) A zoom-in to the central part of panel (b). The entries $ r'_s $, $ r''_s $, $ r'_t $, and $ r''_t $ from Table 1(b) are determined according to (63) and (65) with $ p = 0.05 $
Figure 4.  Separation between the graphs of $ \text{cdf}_s(\cdot\, ;q) $ and $ \text{cdf}_t(\cdot\, ;q) $ for different values of $ \kappa $ and $ q $. The thick colored vertical bars indicate the percentage of uncertain classifications for the ensembles generated from the s-model (the left set of bars in each plot) and t-model (the right set of bars), see also (65) and Fig. 3(c)
Figure 5.  Dependence of the discrimination quality on $ \zeta_{\max} $, see (39), for two different target contrasts. The left column of plots corresponds to algorithm (56) and Table 1(a), and the right column corresponds to algorithm (57) and Table 1(b). The dashed vertical lines are drawn at $ \kappa \zeta_{\max} = b_\Phi \approx 23 $, cf. (40). The lower and upper parts of the colored panels represent ensembles generated from the s-model and t-model, respectively. The percentage of correct classifications is shown in green (two different shades are used to distinguish between the ensemble types), incorrect in red, and uncertain in yellow (only the right column of plots)
Figure 6.  Dependence of discrimination quality on $ \kappa $, see (27). The notations are the same as in Fig. 5
Table 1.  Confusion matrices: (a) for classification using algorithm (56); (b) for classification using algorithm (57). The rows correspond to the models in (42), whereas the columns indicate the outcomes of a particular classification algorithm. The entries are relative frequencies of the events calculated for two ensembles with the same contrast, i.e., $ q_s = q_t = q $
(a) output: s output: t
input: s $ 1 - r_s $ $ r_s $
input: t $ r_t $ $ 1 - r_t $
(b) output: s output: tuncertain
input: s $ 1 - r'_s -r''_s $ $ r'_s $ $ r''_s $
input: t $ r'_t $ $ 1 - r'_t- r''_t $ $ r''_t $
(a) output: s output: t
input: s $ 1 - r_s $ $ r_s $
input: t $ r_t $ $ 1 - r_t $
(b) output: s output: tuncertain
input: s $ 1 - r'_s -r''_s $ $ r'_s $ $ r''_s $
input: t $ r'_t $ $ 1 - r'_t- r''_t $ $ r''_t $
[1]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[2]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

[3]

Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034

[4]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[5]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[6]

Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004

[7]

Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014

[8]

Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335

[9]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[10]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[11]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[12]

Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025

[13]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems and Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

[14]

Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems and Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645

[15]

Giovanni Bozza, Massimo Brignone, Matteo Pastorino, Andrea Randazzo, Michele Piana. Imaging of unknown targets inside inhomogeneous backgrounds by means of qualitative inverse scattering. Inverse Problems and Imaging, 2009, 3 (2) : 231-241. doi: 10.3934/ipi.2009.3.231

[16]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[17]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[18]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems and Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[19]

Roland Griesmaier. Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Problems and Imaging, 2009, 3 (3) : 389-403. doi: 10.3934/ipi.2009.3.389

[20]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems and Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (265)
  • HTML views (112)
  • Cited by (2)

Other articles
by authors

[Back to Top]