Advanced Search
Article Contents
Article Contents

Joint reconstruction in low dose multi-energy CT

  • * Corresponding author: Alexander.Meaney@helsinki.fi

    * Corresponding author: Alexander.Meaney@helsinki.fi 
Abstract Full Text(HTML) Figure(7) / Table(4) Related Papers Cited by
  • Multi-energy CT takes advantage of the non-linearly varying attenuation properties of elemental media with respect to energy, enabling more precise material identification than single-energy CT. The increased precision comes with the cost of a higher radiation dose. A straightforward way to lower the dose is to reduce the number of projections per energy, but this makes tomographic reconstruction more ill-posed. In this paper, we propose how this problem can be overcome with a combination of a regularization method that promotes structural similarity between images at different energies and a suitably selected low-dose data acquisition protocol using non-overlapping projections. The performance of various joint regularization models is assessed with both simulated and experimental data, using the novel low-dose data acquisition protocol. Three of the models are well-established, namely the joint total variation, the linear parallel level sets and the spectral smoothness promoting regularization models. Furthermore, one new joint regularization model is introduced for multi-energy CT: a regularization based on the structure function from the structural similarity index. The findings show that joint regularization outperforms individual channel-by-channel reconstruction. Furthermore, the proposed combination of joint reconstruction and non-overlapping projection geometry enables significant reduction of radiation dose.

    Mathematics Subject Classification: Primary: 92C55, 65N21; Secondary: 65Z05.


    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Illustration of a spectrally non-overlapping projection sampling scheme for low dose multi-energy CT imaging. The X-ray source energies $ E_k, k = 1,2,3 $, are denoted by tube voltages $ \mathrm{kV}_1,\mathrm{kV}_2,\mathrm{kV}_3 $

    Figure 2.  Left: The X-ray attenuation coefficients of water, soft tissue, and cortical bone as functions of X-ray energy. The raw data was obtained from NIST [43]. Right: Example of a realistic tungsten X-ray source spectrum with 120 kVp voltage and filtering (2.5 mm Al + 0.2 mm Cu), and monochromatic radiation with the same effective energy. The spectra were computed using the SpekCalc software [48]

    Figure 3.  Reconstructed images for the simulation test case using 30 projection directions at each energy

    Figure 4.  The RMS errors (left) and the mean SSIM indices (right) for the different reconstruction approaches using 30 projection directions at each energy

    Figure 5.  Comparison of (TV) and (S+TV) reconstructions. Results labeled METHOD(90) are based on overall of $ 3\times 90 = 270 $ projection images using the same 90 directions for each energy. Results labeled METHOD(30W) are based on overall of 90 projections using the non-overlapping 30+30+30 directions (the same geometry that is used in Figure 3). Each image shows a region of interest of the full reconstruction

    Figure 6.  Error metrics for the (TV) and (S+TV) reconstructions shown in Figure 5. Results labeled METHOD(90) are based on overall of $ 3\times 90 = 270 $ projection images using the same 90 directions for each energy. Results labeled METHOD(30W) are based on overall of 90 projections using the non-overlapping 30+30+30 directions

    Figure 7.  Reconstructed images for the experimental data test case

    Table 1.  Imaging geometry used for collecting the experimental data

    Parameter Value
    Focus-center distance 252 mm
    Focus-detector distance 420 mm
    Magnification 5/2
    Detector pixel size 0.200 mm
    Effective pixel size 0.120 mm
    Projection size 552 $ \times $ 576 pixels
    Angular range 360°
    #projections 720
     | Show Table
    DownLoad: CSV

    Table 2.  Energy-specific settings used for collecting the experimental data

    Energy $ U $ (kV) Filtration $ I $ (μA) Exposure time (ms) Frame averaging
    $ E_1 $ 50 None 300 125 4
    $ E_2 $ 80 1 mm Al 180 125 4
    $ E_3 $ 120 0.5 mm Cu 120 250 4
     | Show Table
    DownLoad: CSV

    Table 3.  Selected $ \alpha $ and $ \gamma_k $ parameters for the different regularization terms for the simulated data test case ($ \alpha_{ \rm{SIM}}, \gamma_{k, \rm{SIM}} $) and for the experimental data test case ($ \alpha_{ \rm{EXP}}, \gamma_{k, \rm{EXP}} $). The three values of $ \gamma_k $ are for the three different tube energies with indices $ k = 1,2,3 $

    Prior Acronym $ \alpha_{ \rm{SIM}} $ $ \gamma_{k, \rm{SIM}} $ $ \alpha_{ \rm{EXP}} $ $ \gamma_{k, \rm{EXP}} $
    No prior No prior - - - -
    Total variation TV - 2.25, 0.8, 0.7 - 1.0, 0.5, 0.25
    Joint total variation JTV 2.25 0 1 0
    Linear parallel level sets LPLS 4000 0 6000 0
    First difference D1 400 0 100 0
    Structural S 4e6 0 1e6 0
    First difference + TV D1+TV 50 1.125, 0.4, 0.35 70 0.5, 0.25, 0.125
    Structural + TV S+TV 0.75e5 1.125, 0.4, 0.35 0.5e6 0.5, 0.25, 0.125
     | Show Table
    DownLoad: CSV

    Table 4.  Measurement angles used for energies $ E_1 $, $ E_2 $ and $ E_3 $ in the simulated data case (left) and experimental data case (right)

    $ E_1 $ $ E_2 $ $ E_3 $ $ E_1 $ $ E_2 $ $ E_3 $
    0 2 4 0 4 8
    6 8 10 12 16 20
    12 14 16 24 28 32
    $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
    162 164 166 324 328 332
    168 170 172 336 340 344
    174 176 178 348 352 356
     | Show Table
    DownLoad: CSV
  • [1] R. E. Alvarez and A. Macovski, Energy-selective reconstructions in x-ray computerised tomography, Physics in Medicine & Biology, 21 (1976), 733-744.  doi: 10.1088/0031-9155/21/5/002.
    [2] The ASTRA Toolbox, http://www.astra-toolbox.com/.
    [3] P. V. Blomgren and T. F. Chan, Color TV: Total variation methods for restoration of vector-valued images, IEEE Transactions on Image Processing, 7 (1998), 304-309. 
    [4] T. A. Bubba, M. März, Z. Purisha, M. Lassas and S. Siltanen, Shearlet-based regularization in sparse dynamic tomography, in Wavelets and Sparsity XVII, 10394, Proc. SPIE, 2017, 103940Y. doi: 10.1117/12.2273380.
    [5] T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, 2008.
    [6] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.
    [7] B. ChenZ. ZhangE. Y. SidkyD. Xia and X. Pan, Image reconstruction and scan configurations enabled by optimization-based algorithms in multispectral CT, Physics in Medicine & Biology, 62 (2017), 8763-8793.  doi: 10.1088/1361-6560/aa8a4b.
    [8] J. ChungJ. G. Nagy and I. Sechopoulos, Numerical algorithms for polyenergetic digital breast tomosynthesis reconstruction, SIAM J. Imaging Sci., 3 (2010), 133-152.  doi: 10.1137/090749633.
    [9] I. DanadZ. A. FayadM. J. Willemink and J. K. Min, New applications of cardiac computed tomography: Dual-energy, spectral, and molecular CT imaging, JACC: Cardiovascular Interventions, 8 (2015), 710-723.  doi: 10.1016/j.jcmg.2015.03.005.
    [10] L. De ChiffreS. CarmignatoJ.-P. KruthR. Schmitt and A. Weckenmann, Industrial applications of computed tomography, CIRP Annals, 63 (2014), 655-677.  doi: 10.1016/j.cirp.2014.05.011.
    [11] D. De SantisM. EidC. N. De CeccoB. E. JacobsM. H. Albrecht and A. Varga-Szemes, et al., Dual-energy computed tomography in cardiothoracic vascular imaging, Radiol. Clin. North Am., 56 (2018), 521-534.  doi: 10.1016/j.rcl.2018.03.010.
    [12] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.  doi: 10.1109/TIT.2006.871582.
    [13] M. J. EhrhardtP. MarkiewiczM. LiljerothA. BarnesV. Kolehmainen and J. S. Duncan, et al., PET reconstruction with an anatomical MRI prior using parallel level sets, IEEE transactions on Medical Imaging, 35 (2016), 2189-2199.  doi: 10.1109/TMI.2016.2549601.
    [14] M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton and S. R. Arridge, Joint reconstruction of PET-MRI by exploiting structural similarity, Inverse Problems, 31 (2014), 015001, 23 pp. doi: 10.1088/0266-5611/31/1/015001.
    [15] M. J. Ehrhardt and S. R. Arridge, Vector-valued image processing by parallel level sets, IEEE Trans. Image Process., 23 (2014), 9-18.  doi: 10.1109/TIP.2013.2277775.
    [16] I. A. Elbakri and J. A. Fessler, Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography, in Proceedings IEEE International Symposium on Biomedical Imaging, IEEE, 2002,828–831. doi: 10.1109/ISBI.2002.1029387.
    [17] R. Forghani and S. K. Mukherji, Advanced dual-energy CT applications for the evaluation of the soft tissues of the neck, Clinical Radiology, 73 (2018), 70-80.  doi: 10.1016/j.crad.2017.04.002.
    [18] J. FornaroS. LeschkaD. HibbelnA. ButlerN. Anderson and G. Pache, et al., Dual- and multi-energy CT: Approach to functional imaging, Insights into Imaging, 2 (2011), 149-159.  doi: 10.1007/s13244-010-0057-0.
    [19] H. Gao, H. Yu, S. Osher and G. Wang, Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM), Inverse Problems, 27 (2011), 115012, 22 pp. doi: 10.1088/0266-5611/27/11/115012.
    [20] D. T. Ginat and R. Gupta, Advances in computed tomography imaging technology, Annual Review of Biomedical Engineering, 16 (2014), 431-453.  doi: 10.1146/annurev-bioeng-121813-113601.
    [21] H. W. Goo and J. M. Goo, Dual-energy CT: New horizon in medical imaging, Korean Journal of Radiology, 18 (2017), 555-569.  doi: 10.3348/kjr.2017.18.4.555.
    [22] D. GürsoyT. BiçerA. LanzirottiM. G. Newville and F. De Carlo, Hyperspectral image reconstruction for x-ray fluorescence tomography, Optics Express, 23 (2015), 9014-9023. 
    [23] K. HämäläinenL. HarhanenA. HauptmannA. KallonenE. Niemi and S. Siltanen, Total variation regularization for large-scale x-ray tomography, International Journal of Tomography & Simulation, 25 (2014), 1-25. 
    [24] K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki and S. Siltanen, Sparse tomography, SIAM J. Sci. Comput., 35 (2013), B644–B665. doi: 10.1137/120876277.
    [25] W. R. Hendee and M. K. O'Connor, Radiation risks of medical imaging: Separating fact from fantasy, Radiology, 264 (2012), 312-321.  doi: 10.1148/radiol.12112678.
    [26] ICRP, ICRPpublication 103: The 2007 recommendations of the international commission on radiological protection, Ann. ICRP, 37 (2007), 2-4. 
    [27] ICRP, ICRPpublication 105: Radiation protection in medicine, Ann. ICRP, 37 (2007), 1-63. 
    [28] W. A. Kalender, Dose in x-ray computed tomography, Phys. Med. Biol., 59 (2014), R129–R150. doi: 10.1088/0031-9155/59/3/R129.
    [29] K. KaliszS. HalliburtonS. AbbaraJ. A. LeipsicM. H. AlbrechtU. J. Schoepf and P. Rajiah, Update on cardiovascular applications of multienergy CT, RadioGraphics, 37 (2017), 1955-1974.  doi: 10.1148/rg.2017170100.
    [30] D. Kazantsev, J. S. Jørgensen, M. S. Andersen, W. R. B. Lionheart, P. D. Lee and P. J. Withers, Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography, Inverse Problems, 34 (2018), 064001, 26 pp. doi: 10.1088/1361-6420/aaba86.
    [31] K. KimJ. C. YeW. WorstellJ. OuyangY. RakvongthaiG. El Fakhri and Q. Li, Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty, IEEE Transactions on Medical Imaging, 34 (2015), 748-760.  doi: 10.1109/TMI.2014.2380993.
    [32] V. KolehmainenM. J. Ehrhardt and S. R. Arridge, Incorporating structural prior information and sparsity into EIT using parallel level sets, Inverse Probl. Imaging, 13 (2019), 285-307.  doi: 10.3934/ipi.2019015.
    [33] V. Kolehmainen, S. Siltanen, S. Järvenpää, J. P. Kaipio, P. Koistinen, M. Lassas, et al., Statistical inversion for medical x-ray tomography with few radiographs: Ⅱ. Application to dental radiology, Physics in Medicine & Biology, 48 (2003), 1465. doi: 10.1088/0031-9155/48/10/315.
    [34] M. M. LellJ. E. WildbergerH. AlkadhiJ. Damilakis and M. Kachelriess, Evolution in computed tomography: The battle for speed and dose, Investigative Radiology, 50 (2015), 629-644.  doi: 10.1097/RLI.0000000000000172.
    [35] D. MarinD. T. BollA. Mileto and R. C. Nelson, State of the art: Dual-energy CT of the abdomen, Radiology, 271 (2014), 327-342.  doi: 10.1148/radiol.14131480.
    [36] C. H. McColloughG. H. ChenW. KalenderS. LengE. Samei and K. Taguchi, et al., Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT, Radiology, 264 (2012), 567-580. 
    [37] C. H. McColloughS. LengL. Yu and J. G. Fletcher, Dual- and multi-energy CT: Principles, technical approaches, and clinical applications, Radiology, 276 (2015), 637-653.  doi: 10.1148/radiol.2015142631.
    [38] M. H. McKetty, The AAPM/RSNA physics tutorial for residents. X-ray attenuation, RadioGraphics, 18 (1998), 151-163. 
    [39] K. Michielsen, C. Fedon, J. Nagy and I. Sechopoulos, Dose reduction in breast CT by spectrum switching, in 14th International Workshop on Breast Imaging (IWBI 2018), 10718, Proc. SPIE, 2018, 107180J.
    [40] F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.
    [41] S. Nicolaou, T. Liang, D. T. Murphy, J. R. Korzan, H. Ouellette and P. Munk, Dual-energy CT: A promising new technique for assessment of the musculoskeletal system, American Journal of Roentgenology, 199 (2012), S78–S86. doi: 10.2214/AJR.12.9117.
    [42] S. Niu, G. Yu, J. Ma and J. Wang, Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction, Inverse Problems, 34 (2018), 024003, 20 pp. doi: 10.1088/1361-6420/aa942c.
    [43] NIST Physical Measurement Laboratory Radiation Physics Division, X-ray mass attenuation coefficients: NIST standard reference database 126, 2004, URL https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients.
    [44] J. A. O'Sullivan and J. Benac, Alternating minimization algorithms for transmission tomography, IEEE Transactions on Medical Imaging, 26 (2007), 283-297.  doi: 10.1007/978-1-4615-5121-8_13.
    [45] A. Pan, L. Xu, J. Lee, R. Gupta and G. Barbastathis, Structural similarity regularization of x-ray transport of intensity phase retrieval, in Classical Optics 2014, Optical Society of America, 2014, CW2C.4. doi: 10.1364/COSI.2014.CW2C.4.
    [46] X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25 (2009), 123009, 36 pp. doi: 10.1088/0266-5611/25/12/123009.
    [47] E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Rev. Française Informat. Recherche Opérationnelle, 3 (1969), 35–43.
    [48] G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans and F. Verhaegen, SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes, Physics in Medicine & Biology, 54 (2009), N433–N438. doi: 10.1088/0031-9155/54/19/N01.
    [49] A. A. Postma, P. A. M. Hofman, A. A. R. Stadler, R. J. van Oostenbrugge, M. P. M. Tijssen and J. E. Wildberger, Dual-energy CT of the brain and intracranial vessels, American Journal of Roentgenology, 199 (2012), S26–S33. doi: 10.2214/AJR.12.9115.
    [50] J. Rasch, V. Kolehmainen, R. Nivajärvi, M. Kettunen, O. Gröhn, M. Burger and E.-M. Brinkmann, Dynamic MRI reconstruction from undersampled data with an anatomical prescan, Inverse Problems, 34 (2018), 074001, 30 pp. doi: 10.1088/1361-6420/aac3af.
    [51] D. S. Rigie and P. J. La Riviére, Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization, Physics in Medicine & Biology, 60 (2015), 1741-1762.  doi: 10.1088/0031-9155/60/5/1741.
    [52] D. S. RigieA. A. Sanchez and P. J. La Riviére, Assessment of vectorial total variation penalties on realistic dual-energy CT data, Physics in Medicine & Biology, 62 (2017), 3284-3298.  doi: 10.1088/1361-6560/aa6392.
    [53] L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.
    [54] I. Sechopoulos and C. Ghetti, Optimization of the acquisition geometry in digital tomosynthesis of the breast, Medical Physics, 36 (2009), 1199-1207.  doi: 10.1118/1.3090889.
    [55] W. P. SegarsM. MaheshT. J. BeckE. C. Frey and B. M. W. Tsui, Realistic CT simulation using the 4D XCAT phantom, Medical Physics, 35 (2008), 3800-3808.  doi: 10.1118/1.2955743.
    [56] W. P. SegarsG. M. SturgeonS. MendoncaJ. Grimes and B. M. W. Tsui, 4D XCAT phantom for multimodality imaging research, Medical Physics, 37 (2010), 4902-4915.  doi: 10.1118/1.3480985.
    [57] O. SemerciN. HaoM. E. Kilmer and E. L. Miller, Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23 (2014), 1678-1693.  doi: 10.1109/TIP.2014.2305840.
    [58] E. Y. Sidky, J. H. Jørgensen and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm, Physics in Medicine & Biology, 57 (2012), 3065. doi: 10.1088/0031-9155/57/10/3065.
    [59] E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine & Biology, 53 (2008), 4777. doi: 10.1088/0031-9155/53/17/021.
    [60] S. Siltanen, V. Kolehmainen, S. Järvenpää, J. Kaipio, P. Koistinen, M. Lassas, et al., Statistical inversion for medical x-ray tomography with few radiographs: Ⅰ. General theory, Physics in Medicine & Biology, 48 (2003), 1437. doi: 10.1088/0031-9155/48/10/314.
    [61] R. SymonsB. KraussP. SahbaeeT. CorkM. N. LakshmananD. A. Bluemke and A. Pourmorteza, Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study, Med. Phys., 44 (2017), 5120-5127. 
    [62] M. TubianaL. E. FeinendegenC. Yang and J. M. Kaminski, The linear no-threshold relationship is inconsistent with radiation biologic and experimental data, Radiology, 251 (2009), 13-22.  doi: 10.1148/radiol.2511080671.
    [63] W. van AarleW. J. PalenstijnJ. CantE. JanssensF. Bleichrodt and A. Dabravolski, et al., Fast and flexible x-ray tomography using the ASTRA toolbox, Optics Express, 24 (2016), 25129-25147. 
    [64] W. van AarleW. J. PalenstijnJ. De BeenhouwerT. AltantzisS. BalsK. J. Batenburg and J. Sijbers, The ASTRA toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47. 
    [65] Z. Wang and A. C. Bovik, Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Processing Magazine, 26 (2009), 98-117. 
    [66] Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.
    [67] W. D. WongS. ShahN. MurrayF. WalstraF. Khosa and S. Nicolaou, Advanced musculoskeletal applications of dual-energy computed tomography, Radiol. Clin. North Am., 56 (2018), 587-600.  doi: 10.1016/j.rcl.2018.03.003.
    [68] W. WuY. ZhangQ. WangF. LiuP. Chen and H. Yu, Low-dose spectral CT reconstruction using image gradient $\ell$0-norm and tensor dictionary, Appl. Math. Model., 63 (2018), 538-557.  doi: 10.1016/j.apm.2018.07.006.
    [69] Q. Yang, W. Cong and G. Wang, Superiorization-based multi-energy CT image reconstruction, Inverse Problems, 33 (2017), 044014, 14 pp. doi: 10.1088/1361-6420/aa5e0a.
    [70] S. YangY. SunY. Chen and L. Jiao, Structural similarity regularized and sparse coding based super-resolution for medical images, Biomedical Signal Processing and Control, 7 (2012), 579-590.  doi: 10.1016/j.bspc.2012.08.001.
    [71] L. Yu, S. Leng and C. H. McCollough, Dual-energy CT-based monochromatic imaging, American Journal of Roentgenology, 199 (2012), S9–S15. doi: 10.2214/AJR.12.9121.
    [72] Y. ZhangX. MouG. Wang and H. Yu, Tensor-based dictionary learning for spectral CT reconstruction, IEEE Transactions on Medical Imaging, 36 (2017), 142-154.  doi: 10.1109/TMI.2016.2600249.
    [73] M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, 34 (2008).
  • 加载中
Open Access Under a Creative Commons license




Article Metrics

HTML views(1101) PDF downloads(396) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint