Parameter | Value |
Focus-center distance | 252 mm |
Focus-detector distance | 420 mm |
Magnification | 5/2 |
Detector pixel size | 0.200 mm |
Effective pixel size | 0.120 mm |
Projection size | 552 |
Angular range | 360° |
#projections | 720 |
Multi-energy CT takes advantage of the non-linearly varying attenuation properties of elemental media with respect to energy, enabling more precise material identification than single-energy CT. The increased precision comes with the cost of a higher radiation dose. A straightforward way to lower the dose is to reduce the number of projections per energy, but this makes tomographic reconstruction more ill-posed. In this paper, we propose how this problem can be overcome with a combination of a regularization method that promotes structural similarity between images at different energies and a suitably selected low-dose data acquisition protocol using non-overlapping projections. The performance of various joint regularization models is assessed with both simulated and experimental data, using the novel low-dose data acquisition protocol. Three of the models are well-established, namely the joint total variation, the linear parallel level sets and the spectral smoothness promoting regularization models. Furthermore, one new joint regularization model is introduced for multi-energy CT: a regularization based on the structure function from the structural similarity index. The findings show that joint regularization outperforms individual channel-by-channel reconstruction. Furthermore, the proposed combination of joint reconstruction and non-overlapping projection geometry enables significant reduction of radiation dose.
Citation: |
Figure 2. Left: The X-ray attenuation coefficients of water, soft tissue, and cortical bone as functions of X-ray energy. The raw data was obtained from NIST [43]. Right: Example of a realistic tungsten X-ray source spectrum with 120 kVp voltage and filtering (2.5 mm Al + 0.2 mm Cu), and monochromatic radiation with the same effective energy. The spectra were computed using the SpekCalc software [48]
Figure 5.
Comparison of (TV) and (S+TV) reconstructions. Results labeled METHOD(90) are based on overall of
Figure 6.
Error metrics for the (TV) and (S+TV) reconstructions shown in Figure 5. Results labeled METHOD(90) are based on overall of
Table 1. Imaging geometry used for collecting the experimental data
Parameter | Value |
Focus-center distance | 252 mm |
Focus-detector distance | 420 mm |
Magnification | 5/2 |
Detector pixel size | 0.200 mm |
Effective pixel size | 0.120 mm |
Projection size | 552 |
Angular range | 360° |
#projections | 720 |
Table 2. Energy-specific settings used for collecting the experimental data
Energy | Filtration | Exposure time (ms) | Frame averaging | ||
50 | None | 300 | 125 | 4 | |
80 | 1 mm Al | 180 | 125 | 4 | |
120 | 0.5 mm Cu | 120 | 250 | 4 |
Table 3.
Selected
Prior | Acronym | ||||
No prior | No prior | - | - | - | - |
Total variation | TV | - | 2.25, 0.8, 0.7 | - | 1.0, 0.5, 0.25 |
Joint total variation | JTV | 2.25 | 0 | 1 | 0 |
Linear parallel level sets | LPLS | 4000 | 0 | 6000 | 0 |
First difference | D1 | 400 | 0 | 100 | 0 |
Structural | S | 4e6 | 0 | 1e6 | 0 |
First difference + TV | D1+TV | 50 | 1.125, 0.4, 0.35 | 70 | 0.5, 0.25, 0.125 |
Structural + TV | S+TV | 0.75e5 | 1.125, 0.4, 0.35 | 0.5e6 | 0.5, 0.25, 0.125 |
Table 4.
Measurement angles used for energies
0 | 2 | 4 | 0 | 4 | 8 | |
6 | 8 | 10 | 12 | 16 | 20 | |
12 | 14 | 16 | 24 | 28 | 32 | |
162 | 164 | 166 | 324 | 328 | 332 | |
168 | 170 | 172 | 336 | 340 | 344 | |
174 | 176 | 178 | 348 | 352 | 356 |
[1] |
R. E. Alvarez and A. Macovski, Energy-selective reconstructions in x-ray computerised tomography, Physics in Medicine & Biology, 21 (1976), 733-744.
doi: 10.1088/0031-9155/21/5/002.![]() ![]() |
[2] |
The ASTRA Toolbox, http://www.astra-toolbox.com/.
![]() |
[3] |
P. V. Blomgren and T. F. Chan, Color TV: Total variation methods for restoration of vector-valued images, IEEE Transactions on Image Processing, 7 (1998), 304-309.
![]() |
[4] |
T. A. Bubba, M. März, Z. Purisha, M. Lassas and S. Siltanen, Shearlet-based regularization in sparse dynamic tomography, in Wavelets and Sparsity XVII, 10394, Proc. SPIE, 2017, 103940Y.
doi: 10.1117/12.2273380.![]() ![]() |
[5] |
T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, 2008.
![]() |
[6] |
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.![]() ![]() ![]() |
[7] |
B. Chen, Z. Zhang, E. Y. Sidky, D. Xia and X. Pan, Image reconstruction and scan configurations enabled by optimization-based algorithms in multispectral CT, Physics in Medicine & Biology, 62 (2017), 8763-8793.
doi: 10.1088/1361-6560/aa8a4b.![]() ![]() |
[8] |
J. Chung, J. G. Nagy and I. Sechopoulos, Numerical algorithms for polyenergetic digital breast tomosynthesis reconstruction, SIAM J. Imaging Sci., 3 (2010), 133-152.
doi: 10.1137/090749633.![]() ![]() ![]() |
[9] |
I. Danad, Z. A. Fayad, M. J. Willemink and J. K. Min, New applications of cardiac computed tomography: Dual-energy, spectral, and molecular CT imaging, JACC: Cardiovascular Interventions, 8 (2015), 710-723.
doi: 10.1016/j.jcmg.2015.03.005.![]() ![]() |
[10] |
L. De Chiffre, S. Carmignato, J.-P. Kruth, R. Schmitt and A. Weckenmann, Industrial applications of computed tomography, CIRP Annals, 63 (2014), 655-677.
doi: 10.1016/j.cirp.2014.05.011.![]() ![]() |
[11] |
D. De Santis, M. Eid, C. N. De Cecco, B. E. Jacobs, M. H. Albrecht and A. Varga-Szemes, et al., Dual-energy computed tomography in cardiothoracic vascular imaging, Radiol. Clin. North Am., 56 (2018), 521-534.
doi: 10.1016/j.rcl.2018.03.010.![]() ![]() |
[12] |
D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.
doi: 10.1109/TIT.2006.871582.![]() ![]() ![]() |
[13] |
M. J. Ehrhardt, P. Markiewicz, M. Liljeroth, A. Barnes, V. Kolehmainen and J. S. Duncan, et al., PET reconstruction with an anatomical MRI prior using parallel level sets, IEEE transactions on Medical Imaging, 35 (2016), 2189-2199.
doi: 10.1109/TMI.2016.2549601.![]() ![]() |
[14] |
M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton and S. R. Arridge, Joint reconstruction of PET-MRI by exploiting structural similarity, Inverse Problems, 31 (2014), 015001, 23 pp.
doi: 10.1088/0266-5611/31/1/015001.![]() ![]() ![]() |
[15] |
M. J. Ehrhardt and S. R. Arridge, Vector-valued image processing by parallel level sets, IEEE Trans. Image Process., 23 (2014), 9-18.
doi: 10.1109/TIP.2013.2277775.![]() ![]() ![]() |
[16] |
I. A. Elbakri and J. A. Fessler, Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography, in Proceedings IEEE International Symposium on Biomedical Imaging, IEEE, 2002,828–831.
doi: 10.1109/ISBI.2002.1029387.![]() ![]() |
[17] |
R. Forghani and S. K. Mukherji, Advanced dual-energy CT applications for the evaluation of the soft tissues of the neck, Clinical Radiology, 73 (2018), 70-80.
doi: 10.1016/j.crad.2017.04.002.![]() ![]() |
[18] |
J. Fornaro, S. Leschka, D. Hibbeln, A. Butler, N. Anderson and G. Pache, et al., Dual- and multi-energy CT: Approach to functional imaging, Insights into Imaging, 2 (2011), 149-159.
doi: 10.1007/s13244-010-0057-0.![]() ![]() |
[19] |
H. Gao, H. Yu, S. Osher and G. Wang, Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM), Inverse Problems, 27 (2011), 115012, 22 pp.
doi: 10.1088/0266-5611/27/11/115012.![]() ![]() ![]() |
[20] |
D. T. Ginat and R. Gupta, Advances in computed tomography imaging technology, Annual Review of Biomedical Engineering, 16 (2014), 431-453.
doi: 10.1146/annurev-bioeng-121813-113601.![]() ![]() |
[21] |
H. W. Goo and J. M. Goo, Dual-energy CT: New horizon in medical imaging, Korean Journal of Radiology, 18 (2017), 555-569.
doi: 10.3348/kjr.2017.18.4.555.![]() ![]() |
[22] |
D. Gürsoy, T. Biçer, A. Lanzirotti, M. G. Newville and F. De Carlo, Hyperspectral image reconstruction for x-ray fluorescence tomography, Optics Express, 23 (2015), 9014-9023.
![]() |
[23] |
K. Hämäläinen, L. Harhanen, A. Hauptmann, A. Kallonen, E. Niemi and S. Siltanen, Total variation regularization for large-scale x-ray tomography, International Journal of Tomography & Simulation, 25 (2014), 1-25.
![]() |
[24] |
K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki and S. Siltanen, Sparse tomography, SIAM J. Sci. Comput., 35 (2013), B644–B665.
doi: 10.1137/120876277.![]() ![]() ![]() |
[25] |
W. R. Hendee and M. K. O'Connor, Radiation risks of medical imaging: Separating fact from fantasy, Radiology, 264 (2012), 312-321.
doi: 10.1148/radiol.12112678.![]() ![]() |
[26] |
ICRP, ICRPpublication 103: The 2007 recommendations of the international commission on radiological protection, Ann. ICRP, 37 (2007), 2-4.
![]() |
[27] |
ICRP, ICRPpublication 105: Radiation protection in medicine, Ann. ICRP, 37 (2007), 1-63.
![]() |
[28] |
W. A. Kalender, Dose in x-ray computed tomography, Phys. Med. Biol., 59 (2014), R129–R150.
doi: 10.1088/0031-9155/59/3/R129.![]() ![]() |
[29] |
K. Kalisz, S. Halliburton, S. Abbara, J. A. Leipsic, M. H. Albrecht, U. J. Schoepf and P. Rajiah, Update on cardiovascular applications of multienergy CT, RadioGraphics, 37 (2017), 1955-1974.
doi: 10.1148/rg.2017170100.![]() ![]() |
[30] |
D. Kazantsev, J. S. Jørgensen, M. S. Andersen, W. R. B. Lionheart, P. D. Lee and P. J. Withers, Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography, Inverse Problems, 34 (2018), 064001, 26 pp.
doi: 10.1088/1361-6420/aaba86.![]() ![]() ![]() |
[31] |
K. Kim, J. C. Ye, W. Worstell, J. Ouyang, Y. Rakvongthai, G. El Fakhri and Q. Li, Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty, IEEE Transactions on Medical Imaging, 34 (2015), 748-760.
doi: 10.1109/TMI.2014.2380993.![]() ![]() |
[32] |
V. Kolehmainen, M. J. Ehrhardt and S. R. Arridge, Incorporating structural prior information and sparsity into EIT using parallel level sets, Inverse Probl. Imaging, 13 (2019), 285-307.
doi: 10.3934/ipi.2019015.![]() ![]() ![]() |
[33] |
V. Kolehmainen, S. Siltanen, S. Järvenpää, J. P. Kaipio, P. Koistinen, M. Lassas, et al., Statistical inversion for medical x-ray tomography with few radiographs: Ⅱ. Application to dental radiology, Physics in Medicine & Biology, 48 (2003), 1465.
doi: 10.1088/0031-9155/48/10/315.![]() ![]() |
[34] |
M. M. Lell, J. E. Wildberger, H. Alkadhi, J. Damilakis and M. Kachelriess, Evolution in computed tomography: The battle for speed and dose, Investigative Radiology, 50 (2015), 629-644.
doi: 10.1097/RLI.0000000000000172.![]() ![]() |
[35] |
D. Marin, D. T. Boll, A. Mileto and R. C. Nelson, State of the art: Dual-energy CT of the abdomen, Radiology, 271 (2014), 327-342.
doi: 10.1148/radiol.14131480.![]() ![]() |
[36] |
C. H. McCollough, G. H. Chen, W. Kalender, S. Leng, E. Samei and K. Taguchi, et al., Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT, Radiology, 264 (2012), 567-580.
![]() |
[37] |
C. H. McCollough, S. Leng, L. Yu and J. G. Fletcher, Dual- and multi-energy CT: Principles, technical approaches, and clinical applications, Radiology, 276 (2015), 637-653.
doi: 10.1148/radiol.2015142631.![]() ![]() |
[38] |
M. H. McKetty, The AAPM/RSNA physics tutorial for residents. X-ray attenuation, RadioGraphics, 18 (1998), 151-163.
![]() |
[39] |
K. Michielsen, C. Fedon, J. Nagy and I. Sechopoulos, Dose reduction in breast CT by spectrum switching, in 14th International Workshop on Breast Imaging (IWBI 2018), 10718, Proc. SPIE, 2018, 107180J.
![]() |
[40] |
F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.
![]() ![]() |
[41] |
S. Nicolaou, T. Liang, D. T. Murphy, J. R. Korzan, H. Ouellette and P. Munk, Dual-energy CT: A promising new technique for assessment of the musculoskeletal system, American Journal of Roentgenology, 199 (2012), S78–S86.
doi: 10.2214/AJR.12.9117.![]() ![]() |
[42] |
S. Niu, G. Yu, J. Ma and J. Wang, Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction, Inverse Problems, 34 (2018), 024003, 20 pp.
doi: 10.1088/1361-6420/aa942c.![]() ![]() ![]() |
[43] |
NIST Physical Measurement Laboratory Radiation Physics Division, X-ray mass attenuation coefficients: NIST standard reference database 126, 2004, URL https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients.
![]() |
[44] |
J. A. O'Sullivan and J. Benac, Alternating minimization algorithms for transmission tomography, IEEE Transactions on Medical Imaging, 26 (2007), 283-297.
doi: 10.1007/978-1-4615-5121-8_13.![]() ![]() |
[45] |
A. Pan, L. Xu, J. Lee, R. Gupta and G. Barbastathis, Structural similarity regularization of x-ray transport of intensity phase retrieval, in Classical Optics 2014, Optical Society of America, 2014, CW2C.4.
doi: 10.1364/COSI.2014.CW2C.4.![]() ![]() |
[46] |
X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25 (2009), 123009, 36 pp.
doi: 10.1088/0266-5611/25/12/123009.![]() ![]() ![]() |
[47] |
E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Rev. Française Informat. Recherche Opérationnelle, 3 (1969), 35–43.
![]() ![]() |
[48] |
G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans and F. Verhaegen, SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes, Physics in Medicine & Biology, 54 (2009), N433–N438.
doi: 10.1088/0031-9155/54/19/N01.![]() ![]() |
[49] |
A. A. Postma, P. A. M. Hofman, A. A. R. Stadler, R. J. van Oostenbrugge, M. P. M. Tijssen and J. E. Wildberger, Dual-energy CT of the brain and intracranial vessels, American Journal of Roentgenology, 199 (2012), S26–S33.
doi: 10.2214/AJR.12.9115.![]() ![]() |
[50] |
J. Rasch, V. Kolehmainen, R. Nivajärvi, M. Kettunen, O. Gröhn, M. Burger and E.-M. Brinkmann, Dynamic MRI reconstruction from undersampled data with an anatomical prescan, Inverse Problems, 34 (2018), 074001, 30 pp.
doi: 10.1088/1361-6420/aac3af.![]() ![]() ![]() |
[51] |
D. S. Rigie and P. J. La Riviére, Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization, Physics in Medicine & Biology, 60 (2015), 1741-1762.
doi: 10.1088/0031-9155/60/5/1741.![]() ![]() |
[52] |
D. S. Rigie, A. A. Sanchez and P. J. La Riviére, Assessment of vectorial total variation penalties on realistic dual-energy CT data, Physics in Medicine & Biology, 62 (2017), 3284-3298.
doi: 10.1088/1361-6560/aa6392.![]() ![]() |
[53] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.![]() ![]() ![]() |
[54] |
I. Sechopoulos and C. Ghetti, Optimization of the acquisition geometry in digital tomosynthesis of the breast, Medical Physics, 36 (2009), 1199-1207.
doi: 10.1118/1.3090889.![]() ![]() |
[55] |
W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey and B. M. W. Tsui, Realistic CT simulation using the 4D XCAT phantom, Medical Physics, 35 (2008), 3800-3808.
doi: 10.1118/1.2955743.![]() ![]() |
[56] |
W. P. Segars, G. M. Sturgeon, S. Mendonca, J. Grimes and B. M. W. Tsui, 4D XCAT phantom for multimodality imaging research, Medical Physics, 37 (2010), 4902-4915.
doi: 10.1118/1.3480985.![]() ![]() |
[57] |
O. Semerci, N. Hao, M. E. Kilmer and E. L. Miller, Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23 (2014), 1678-1693.
doi: 10.1109/TIP.2014.2305840.![]() ![]() ![]() |
[58] |
E. Y. Sidky, J. H. Jørgensen and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm, Physics in Medicine & Biology, 57 (2012), 3065.
doi: 10.1088/0031-9155/57/10/3065.![]() ![]() |
[59] |
E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine & Biology, 53 (2008), 4777.
doi: 10.1088/0031-9155/53/17/021.![]() ![]() |
[60] |
S. Siltanen, V. Kolehmainen, S. Järvenpää, J. Kaipio, P. Koistinen, M. Lassas, et al., Statistical inversion for medical x-ray tomography with few radiographs: Ⅰ. General theory, Physics in Medicine & Biology, 48 (2003), 1437.
doi: 10.1088/0031-9155/48/10/314.![]() ![]() |
[61] |
R. Symons, B. Krauss, P. Sahbaee, T. Cork, M. N. Lakshmanan, D. A. Bluemke and A. Pourmorteza, Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study, Med. Phys., 44 (2017), 5120-5127.
![]() |
[62] |
M. Tubiana, L. E. Feinendegen, C. Yang and J. M. Kaminski, The linear no-threshold relationship is inconsistent with radiation biologic and experimental data, Radiology, 251 (2009), 13-22.
doi: 10.1148/radiol.2511080671.![]() ![]() |
[63] |
W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt and A. Dabravolski, et al., Fast and flexible x-ray tomography using the ASTRA toolbox, Optics Express, 24 (2016), 25129-25147.
![]() |
[64] |
W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg and J. Sijbers, The ASTRA toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47.
![]() |
[65] |
Z. Wang and A. C. Bovik, Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Processing Magazine, 26 (2009), 98-117.
![]() |
[66] |
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.![]() ![]() |
[67] |
W. D. Wong, S. Shah, N. Murray, F. Walstra, F. Khosa and S. Nicolaou, Advanced musculoskeletal applications of dual-energy computed tomography, Radiol. Clin. North Am., 56 (2018), 587-600.
doi: 10.1016/j.rcl.2018.03.003.![]() ![]() |
[68] |
W. Wu, Y. Zhang, Q. Wang, F. Liu, P. Chen and H. Yu, Low-dose spectral CT reconstruction using image gradient $\ell$0-norm and tensor dictionary, Appl. Math. Model., 63 (2018), 538-557.
doi: 10.1016/j.apm.2018.07.006.![]() ![]() ![]() |
[69] |
Q. Yang, W. Cong and G. Wang, Superiorization-based multi-energy CT image reconstruction, Inverse Problems, 33 (2017), 044014, 14 pp.
doi: 10.1088/1361-6420/aa5e0a.![]() ![]() ![]() |
[70] |
S. Yang, Y. Sun, Y. Chen and L. Jiao, Structural similarity regularized and sparse coding based super-resolution for medical images, Biomedical Signal Processing and Control, 7 (2012), 579-590.
doi: 10.1016/j.bspc.2012.08.001.![]() ![]() |
[71] |
L. Yu, S. Leng and C. H. McCollough, Dual-energy CT-based monochromatic imaging, American Journal of Roentgenology, 199 (2012), S9–S15.
doi: 10.2214/AJR.12.9121.![]() ![]() |
[72] |
Y. Zhang, X. Mou, G. Wang and H. Yu, Tensor-based dictionary learning for spectral CT reconstruction, IEEE Transactions on Medical Imaging, 36 (2017), 142-154.
doi: 10.1109/TMI.2016.2600249.![]() ![]() |
[73] |
M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, 34 (2008).
![]() |