August  2020, 14(4): 607-629. doi: 10.3934/ipi.2020028

Joint reconstruction in low dose multi-energy CT

1. 

Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland

2. 

Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

* Corresponding author: Alexander.Meaney@helsinki.fi

Received  June 2019 Revised  December 2019 Published  May 2020

Multi-energy CT takes advantage of the non-linearly varying attenuation properties of elemental media with respect to energy, enabling more precise material identification than single-energy CT. The increased precision comes with the cost of a higher radiation dose. A straightforward way to lower the dose is to reduce the number of projections per energy, but this makes tomographic reconstruction more ill-posed. In this paper, we propose how this problem can be overcome with a combination of a regularization method that promotes structural similarity between images at different energies and a suitably selected low-dose data acquisition protocol using non-overlapping projections. The performance of various joint regularization models is assessed with both simulated and experimental data, using the novel low-dose data acquisition protocol. Three of the models are well-established, namely the joint total variation, the linear parallel level sets and the spectral smoothness promoting regularization models. Furthermore, one new joint regularization model is introduced for multi-energy CT: a regularization based on the structure function from the structural similarity index. The findings show that joint regularization outperforms individual channel-by-channel reconstruction. Furthermore, the proposed combination of joint reconstruction and non-overlapping projection geometry enables significant reduction of radiation dose.

Citation: Jussi Toivanen, Alexander Meaney, Samuli Siltanen, Ville Kolehmainen. Joint reconstruction in low dose multi-energy CT. Inverse Problems & Imaging, 2020, 14 (4) : 607-629. doi: 10.3934/ipi.2020028
References:
[1]

R. E. Alvarez and A. Macovski, Energy-selective reconstructions in x-ray computerised tomography, Physics in Medicine & Biology, 21 (1976), 733-744.  doi: 10.1088/0031-9155/21/5/002.  Google Scholar

[2]

The ASTRA Toolbox, http://www.astra-toolbox.com/. Google Scholar

[3]

P. V. Blomgren and T. F. Chan, Color TV: Total variation methods for restoration of vector-valued images, IEEE Transactions on Image Processing, 7 (1998), 304-309.   Google Scholar

[4]

T. A. Bubba, M. März, Z. Purisha, M. Lassas and S. Siltanen, Shearlet-based regularization in sparse dynamic tomography, in Wavelets and Sparsity XVII, 10394, Proc. SPIE, 2017, 103940Y. doi: 10.1117/12.2273380.  Google Scholar

[5]

T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, 2008. Google Scholar

[6]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.  Google Scholar

[7]

B. ChenZ. ZhangE. Y. SidkyD. Xia and X. Pan, Image reconstruction and scan configurations enabled by optimization-based algorithms in multispectral CT, Physics in Medicine & Biology, 62 (2017), 8763-8793.  doi: 10.1088/1361-6560/aa8a4b.  Google Scholar

[8]

J. ChungJ. G. Nagy and I. Sechopoulos, Numerical algorithms for polyenergetic digital breast tomosynthesis reconstruction, SIAM J. Imaging Sci., 3 (2010), 133-152.  doi: 10.1137/090749633.  Google Scholar

[9]

I. DanadZ. A. FayadM. J. Willemink and J. K. Min, New applications of cardiac computed tomography: Dual-energy, spectral, and molecular CT imaging, JACC: Cardiovascular Interventions, 8 (2015), 710-723.  doi: 10.1016/j.jcmg.2015.03.005.  Google Scholar

[10]

L. De ChiffreS. CarmignatoJ.-P. KruthR. Schmitt and A. Weckenmann, Industrial applications of computed tomography, CIRP Annals, 63 (2014), 655-677.  doi: 10.1016/j.cirp.2014.05.011.  Google Scholar

[11]

D. De SantisM. EidC. N. De CeccoB. E. JacobsM. H. Albrecht and A. Varga-Szemes, Dual-energy computed tomography in cardiothoracic vascular imaging, Radiol. Clin. North Am., 56 (2018), 521-534.  doi: 10.1016/j.rcl.2018.03.010.  Google Scholar

[12]

D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[13]

M. J. EhrhardtP. MarkiewiczM. LiljerothA. BarnesV. Kolehmainen and J. S. Duncan, PET reconstruction with an anatomical MRI prior using parallel level sets, IEEE transactions on Medical Imaging, 35 (2016), 2189-2199.  doi: 10.1109/TMI.2016.2549601.  Google Scholar

[14]

M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton and S. R. Arridge, Joint reconstruction of PET-MRI by exploiting structural similarity, Inverse Problems, 31 (2014), 015001, 23 pp. doi: 10.1088/0266-5611/31/1/015001.  Google Scholar

[15]

M. J. Ehrhardt and S. R. Arridge, Vector-valued image processing by parallel level sets, IEEE Trans. Image Process., 23 (2014), 9-18.  doi: 10.1109/TIP.2013.2277775.  Google Scholar

[16]

I. A. Elbakri and J. A. Fessler, Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography, in Proceedings IEEE International Symposium on Biomedical Imaging, IEEE, 2002,828–831. doi: 10.1109/ISBI.2002.1029387.  Google Scholar

[17]

R. Forghani and S. K. Mukherji, Advanced dual-energy CT applications for the evaluation of the soft tissues of the neck, Clinical Radiology, 73 (2018), 70-80.  doi: 10.1016/j.crad.2017.04.002.  Google Scholar

[18]

J. FornaroS. LeschkaD. HibbelnA. ButlerN. Anderson and G. Pache, Dual- and multi-energy CT: Approach to functional imaging, Insights into Imaging, 2 (2011), 149-159.  doi: 10.1007/s13244-010-0057-0.  Google Scholar

[19]

H. Gao, H. Yu, S. Osher and G. Wang, Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM), Inverse Problems, 27 (2011), 115012, 22 pp. doi: 10.1088/0266-5611/27/11/115012.  Google Scholar

[20]

D. T. Ginat and R. Gupta, Advances in computed tomography imaging technology, Annual Review of Biomedical Engineering, 16 (2014), 431-453.  doi: 10.1146/annurev-bioeng-121813-113601.  Google Scholar

[21]

H. W. Goo and J. M. Goo, Dual-energy CT: New horizon in medical imaging, Korean Journal of Radiology, 18 (2017), 555-569.  doi: 10.3348/kjr.2017.18.4.555.  Google Scholar

[22]

D. GürsoyT. BiçerA. LanzirottiM. G. Newville and F. De Carlo, Hyperspectral image reconstruction for x-ray fluorescence tomography, Optics Express, 23 (2015), 9014-9023.   Google Scholar

[23]

K. HämäläinenL. HarhanenA. HauptmannA. KallonenE. Niemi and S. Siltanen, Total variation regularization for large-scale x-ray tomography, International Journal of Tomography & Simulation, 25 (2014), 1-25.   Google Scholar

[24]

K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki and S. Siltanen, Sparse tomography, SIAM J. Sci. Comput., 35 (2013), B644–B665. doi: 10.1137/120876277.  Google Scholar

[25]

W. R. Hendee and M. K. O'Connor, Radiation risks of medical imaging: Separating fact from fantasy, Radiology, 264 (2012), 312-321.  doi: 10.1148/radiol.12112678.  Google Scholar

[26]

ICRP, ICRPpublication 103: The 2007 recommendations of the international commission on radiological protection, Ann. ICRP, 37 (2007), 2-4.   Google Scholar

[27]

ICRP, ICRPpublication 105: Radiation protection in medicine, Ann. ICRP, 37 (2007), 1-63.   Google Scholar

[28]

W. A. Kalender, Dose in x-ray computed tomography, Phys. Med. Biol., 59 (2014), R129–R150. doi: 10.1088/0031-9155/59/3/R129.  Google Scholar

[29]

K. KaliszS. HalliburtonS. AbbaraJ. A. LeipsicM. H. AlbrechtU. J. Schoepf and P. Rajiah, Update on cardiovascular applications of multienergy CT, RadioGraphics, 37 (2017), 1955-1974.  doi: 10.1148/rg.2017170100.  Google Scholar

[30]

D. Kazantsev, J. S. Jørgensen, M. S. Andersen, W. R. B. Lionheart, P. D. Lee and P. J. Withers, Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography, Inverse Problems, 34 (2018), 064001, 26 pp. doi: 10.1088/1361-6420/aaba86.  Google Scholar

[31]

K. KimJ. C. YeW. WorstellJ. OuyangY. RakvongthaiG. El Fakhri and Q. Li, Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty, IEEE Transactions on Medical Imaging, 34 (2015), 748-760.  doi: 10.1109/TMI.2014.2380993.  Google Scholar

[32]

V. KolehmainenM. J. Ehrhardt and S. R. Arridge, Incorporating structural prior information and sparsity into EIT using parallel level sets, Inverse Probl. Imaging, 13 (2019), 285-307.  doi: 10.3934/ipi.2019015.  Google Scholar

[33]

V. Kolehmainen, S. Siltanen, S. Järvenpää, J. P. Kaipio, P. Koistinen, M. Lassas, et al., Statistical inversion for medical x-ray tomography with few radiographs: Ⅱ. Application to dental radiology, Physics in Medicine & Biology, 48 (2003), 1465. doi: 10.1088/0031-9155/48/10/315.  Google Scholar

[34]

M. M. LellJ. E. WildbergerH. AlkadhiJ. Damilakis and M. Kachelriess, Evolution in computed tomography: The battle for speed and dose, Investigative Radiology, 50 (2015), 629-644.  doi: 10.1097/RLI.0000000000000172.  Google Scholar

[35]

D. MarinD. T. BollA. Mileto and R. C. Nelson, State of the art: Dual-energy CT of the abdomen, Radiology, 271 (2014), 327-342.  doi: 10.1148/radiol.14131480.  Google Scholar

[36]

C. H. McColloughG. H. ChenW. KalenderS. LengE. Samei and K. Taguchi, Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT, Radiology, 264 (2012), 567-580.   Google Scholar

[37]

C. H. McColloughS. LengL. Yu and J. G. Fletcher, Dual- and multi-energy CT: Principles, technical approaches, and clinical applications, Radiology, 276 (2015), 637-653.  doi: 10.1148/radiol.2015142631.  Google Scholar

[38]

M. H. McKetty, The AAPM/RSNA physics tutorial for residents. X-ray attenuation, RadioGraphics, 18 (1998), 151-163.   Google Scholar

[39]

K. Michielsen, C. Fedon, J. Nagy and I. Sechopoulos, Dose reduction in breast CT by spectrum switching, in 14th International Workshop on Breast Imaging (IWBI 2018), 10718, Proc. SPIE, 2018, 107180J. Google Scholar

[40]

F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.  Google Scholar

[41]

S. Nicolaou, T. Liang, D. T. Murphy, J. R. Korzan, H. Ouellette and P. Munk, Dual-energy CT: A promising new technique for assessment of the musculoskeletal system, American Journal of Roentgenology, 199 (2012), S78–S86. doi: 10.2214/AJR.12.9117.  Google Scholar

[42]

S. Niu, G. Yu, J. Ma and J. Wang, Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction, Inverse Problems, 34 (2018), 024003, 20 pp. doi: 10.1088/1361-6420/aa942c.  Google Scholar

[43]

NIST Physical Measurement Laboratory Radiation Physics Division, X-ray mass attenuation coefficients: NIST standard reference database 126, 2004, URL https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. Google Scholar

[44]

J. A. O'Sullivan and J. Benac, Alternating minimization algorithms for transmission tomography, IEEE Transactions on Medical Imaging, 26 (2007), 283-297.  doi: 10.1007/978-1-4615-5121-8_13.  Google Scholar

[45]

A. Pan, L. Xu, J. Lee, R. Gupta and G. Barbastathis, Structural similarity regularization of x-ray transport of intensity phase retrieval, in Classical Optics 2014, Optical Society of America, 2014, CW2C.4. doi: 10.1364/COSI.2014.CW2C.4.  Google Scholar

[46]

X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25 (2009), 123009, 36 pp. doi: 10.1088/0266-5611/25/12/123009.  Google Scholar

[47]

E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Rev. Française Informat. Recherche Opérationnelle, 3 (1969), 35–43.  Google Scholar

[48]

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans and F. Verhaegen, SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes, Physics in Medicine & Biology, 54 (2009), N433–N438. doi: 10.1088/0031-9155/54/19/N01.  Google Scholar

[49]

A. A. Postma, P. A. M. Hofman, A. A. R. Stadler, R. J. van Oostenbrugge, M. P. M. Tijssen and J. E. Wildberger, Dual-energy CT of the brain and intracranial vessels, American Journal of Roentgenology, 199 (2012), S26–S33. doi: 10.2214/AJR.12.9115.  Google Scholar

[50]

J. Rasch, V. Kolehmainen, R. Nivajärvi, M. Kettunen, O. Gröhn, M. Burger and E.-M. Brinkmann, Dynamic MRI reconstruction from undersampled data with an anatomical prescan, Inverse Problems, 34 (2018), 074001, 30 pp. doi: 10.1088/1361-6420/aac3af.  Google Scholar

[51]

D. S. Rigie and P. J. La Riviére, Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization, Physics in Medicine & Biology, 60 (2015), 1741-1762.  doi: 10.1088/0031-9155/60/5/1741.  Google Scholar

[52]

D. S. RigieA. A. Sanchez and P. J. La Riviére, Assessment of vectorial total variation penalties on realistic dual-energy CT data, Physics in Medicine & Biology, 62 (2017), 3284-3298.  doi: 10.1088/1361-6560/aa6392.  Google Scholar

[53]

L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[54]

I. Sechopoulos and C. Ghetti, Optimization of the acquisition geometry in digital tomosynthesis of the breast, Medical Physics, 36 (2009), 1199-1207.  doi: 10.1118/1.3090889.  Google Scholar

[55]

W. P. SegarsM. MaheshT. J. BeckE. C. Frey and B. M. W. Tsui, Realistic CT simulation using the 4D XCAT phantom, Medical Physics, 35 (2008), 3800-3808.  doi: 10.1118/1.2955743.  Google Scholar

[56]

W. P. SegarsG. M. SturgeonS. MendoncaJ. Grimes and B. M. W. Tsui, 4D XCAT phantom for multimodality imaging research, Medical Physics, 37 (2010), 4902-4915.  doi: 10.1118/1.3480985.  Google Scholar

[57]

O. SemerciN. HaoM. E. Kilmer and E. L. Miller, Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23 (2014), 1678-1693.  doi: 10.1109/TIP.2014.2305840.  Google Scholar

[58]

E. Y. Sidky, J. H. Jørgensen and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm, Physics in Medicine & Biology, 57 (2012), 3065. doi: 10.1088/0031-9155/57/10/3065.  Google Scholar

[59]

E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine & Biology, 53 (2008), 4777. doi: 10.1088/0031-9155/53/17/021.  Google Scholar

[60]

S. Siltanen, V. Kolehmainen, S. Järvenpää, J. Kaipio, P. Koistinen, M. Lassas, et al., Statistical inversion for medical x-ray tomography with few radiographs: Ⅰ. General theory, Physics in Medicine & Biology, 48 (2003), 1437. doi: 10.1088/0031-9155/48/10/314.  Google Scholar

[61]

R. SymonsB. KraussP. SahbaeeT. CorkM. N. LakshmananD. A. Bluemke and A. Pourmorteza, Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study, Med. Phys., 44 (2017), 5120-5127.   Google Scholar

[62]

M. TubianaL. E. FeinendegenC. Yang and J. M. Kaminski, The linear no-threshold relationship is inconsistent with radiation biologic and experimental data, Radiology, 251 (2009), 13-22.  doi: 10.1148/radiol.2511080671.  Google Scholar

[63]

W. van AarleW. J. PalenstijnJ. CantE. JanssensF. Bleichrodt and A. Dabravolski, Fast and flexible x-ray tomography using the ASTRA toolbox, Optics Express, 24 (2016), 25129-25147.   Google Scholar

[64]

W. van AarleW. J. PalenstijnJ. De BeenhouwerT. AltantzisS. BalsK. J. Batenburg and J. Sijbers, The ASTRA toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47.   Google Scholar

[65]

Z. Wang and A. C. Bovik, Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Processing Magazine, 26 (2009), 98-117.   Google Scholar

[66]

Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.  Google Scholar

[67]

W. D. WongS. ShahN. MurrayF. WalstraF. Khosa and S. Nicolaou, Advanced musculoskeletal applications of dual-energy computed tomography, Radiol. Clin. North Am., 56 (2018), 587-600.  doi: 10.1016/j.rcl.2018.03.003.  Google Scholar

[68]

W. WuY. ZhangQ. WangF. LiuP. Chen and H. Yu, Low-dose spectral CT reconstruction using image gradient $\ell$0-norm and tensor dictionary, Appl. Math. Model., 63 (2018), 538-557.  doi: 10.1016/j.apm.2018.07.006.  Google Scholar

[69]

Q. Yang, W. Cong and G. Wang, Superiorization-based multi-energy CT image reconstruction, Inverse Problems, 33 (2017), 044014, 14 pp. doi: 10.1088/1361-6420/aa5e0a.  Google Scholar

[70]

S. YangY. SunY. Chen and L. Jiao, Structural similarity regularized and sparse coding based super-resolution for medical images, Biomedical Signal Processing and Control, 7 (2012), 579-590.  doi: 10.1016/j.bspc.2012.08.001.  Google Scholar

[71]

L. Yu, S. Leng and C. H. McCollough, Dual-energy CT-based monochromatic imaging, American Journal of Roentgenology, 199 (2012), S9–S15. doi: 10.2214/AJR.12.9121.  Google Scholar

[72]

Y. ZhangX. MouG. Wang and H. Yu, Tensor-based dictionary learning for spectral CT reconstruction, IEEE Transactions on Medical Imaging, 36 (2017), 142-154.  doi: 10.1109/TMI.2016.2600249.  Google Scholar

[73]

M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, 34 (2008). Google Scholar

show all references

References:
[1]

R. E. Alvarez and A. Macovski, Energy-selective reconstructions in x-ray computerised tomography, Physics in Medicine & Biology, 21 (1976), 733-744.  doi: 10.1088/0031-9155/21/5/002.  Google Scholar

[2]

The ASTRA Toolbox, http://www.astra-toolbox.com/. Google Scholar

[3]

P. V. Blomgren and T. F. Chan, Color TV: Total variation methods for restoration of vector-valued images, IEEE Transactions on Image Processing, 7 (1998), 304-309.   Google Scholar

[4]

T. A. Bubba, M. März, Z. Purisha, M. Lassas and S. Siltanen, Shearlet-based regularization in sparse dynamic tomography, in Wavelets and Sparsity XVII, 10394, Proc. SPIE, 2017, 103940Y. doi: 10.1117/12.2273380.  Google Scholar

[5]

T. M. Buzug, Computed Tomography: From Photon Statistics to Modern Cone-Beam CT, Springer, 2008. Google Scholar

[6]

A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.  doi: 10.1007/s10851-010-0251-1.  Google Scholar

[7]

B. ChenZ. ZhangE. Y. SidkyD. Xia and X. Pan, Image reconstruction and scan configurations enabled by optimization-based algorithms in multispectral CT, Physics in Medicine & Biology, 62 (2017), 8763-8793.  doi: 10.1088/1361-6560/aa8a4b.  Google Scholar

[8]

J. ChungJ. G. Nagy and I. Sechopoulos, Numerical algorithms for polyenergetic digital breast tomosynthesis reconstruction, SIAM J. Imaging Sci., 3 (2010), 133-152.  doi: 10.1137/090749633.  Google Scholar

[9]

I. DanadZ. A. FayadM. J. Willemink and J. K. Min, New applications of cardiac computed tomography: Dual-energy, spectral, and molecular CT imaging, JACC: Cardiovascular Interventions, 8 (2015), 710-723.  doi: 10.1016/j.jcmg.2015.03.005.  Google Scholar

[10]

L. De ChiffreS. CarmignatoJ.-P. KruthR. Schmitt and A. Weckenmann, Industrial applications of computed tomography, CIRP Annals, 63 (2014), 655-677.  doi: 10.1016/j.cirp.2014.05.011.  Google Scholar

[11]

D. De SantisM. EidC. N. De CeccoB. E. JacobsM. H. Albrecht and A. Varga-Szemes, Dual-energy computed tomography in cardiothoracic vascular imaging, Radiol. Clin. North Am., 56 (2018), 521-534.  doi: 10.1016/j.rcl.2018.03.010.  Google Scholar

[12]

D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), 1289-1306.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[13]

M. J. EhrhardtP. MarkiewiczM. LiljerothA. BarnesV. Kolehmainen and J. S. Duncan, PET reconstruction with an anatomical MRI prior using parallel level sets, IEEE transactions on Medical Imaging, 35 (2016), 2189-2199.  doi: 10.1109/TMI.2016.2549601.  Google Scholar

[14]

M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton and S. R. Arridge, Joint reconstruction of PET-MRI by exploiting structural similarity, Inverse Problems, 31 (2014), 015001, 23 pp. doi: 10.1088/0266-5611/31/1/015001.  Google Scholar

[15]

M. J. Ehrhardt and S. R. Arridge, Vector-valued image processing by parallel level sets, IEEE Trans. Image Process., 23 (2014), 9-18.  doi: 10.1109/TIP.2013.2277775.  Google Scholar

[16]

I. A. Elbakri and J. A. Fessler, Segmentation-free statistical image reconstruction for polyenergetic x-ray computed tomography, in Proceedings IEEE International Symposium on Biomedical Imaging, IEEE, 2002,828–831. doi: 10.1109/ISBI.2002.1029387.  Google Scholar

[17]

R. Forghani and S. K. Mukherji, Advanced dual-energy CT applications for the evaluation of the soft tissues of the neck, Clinical Radiology, 73 (2018), 70-80.  doi: 10.1016/j.crad.2017.04.002.  Google Scholar

[18]

J. FornaroS. LeschkaD. HibbelnA. ButlerN. Anderson and G. Pache, Dual- and multi-energy CT: Approach to functional imaging, Insights into Imaging, 2 (2011), 149-159.  doi: 10.1007/s13244-010-0057-0.  Google Scholar

[19]

H. Gao, H. Yu, S. Osher and G. Wang, Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM), Inverse Problems, 27 (2011), 115012, 22 pp. doi: 10.1088/0266-5611/27/11/115012.  Google Scholar

[20]

D. T. Ginat and R. Gupta, Advances in computed tomography imaging technology, Annual Review of Biomedical Engineering, 16 (2014), 431-453.  doi: 10.1146/annurev-bioeng-121813-113601.  Google Scholar

[21]

H. W. Goo and J. M. Goo, Dual-energy CT: New horizon in medical imaging, Korean Journal of Radiology, 18 (2017), 555-569.  doi: 10.3348/kjr.2017.18.4.555.  Google Scholar

[22]

D. GürsoyT. BiçerA. LanzirottiM. G. Newville and F. De Carlo, Hyperspectral image reconstruction for x-ray fluorescence tomography, Optics Express, 23 (2015), 9014-9023.   Google Scholar

[23]

K. HämäläinenL. HarhanenA. HauptmannA. KallonenE. Niemi and S. Siltanen, Total variation regularization for large-scale x-ray tomography, International Journal of Tomography & Simulation, 25 (2014), 1-25.   Google Scholar

[24]

K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki and S. Siltanen, Sparse tomography, SIAM J. Sci. Comput., 35 (2013), B644–B665. doi: 10.1137/120876277.  Google Scholar

[25]

W. R. Hendee and M. K. O'Connor, Radiation risks of medical imaging: Separating fact from fantasy, Radiology, 264 (2012), 312-321.  doi: 10.1148/radiol.12112678.  Google Scholar

[26]

ICRP, ICRPpublication 103: The 2007 recommendations of the international commission on radiological protection, Ann. ICRP, 37 (2007), 2-4.   Google Scholar

[27]

ICRP, ICRPpublication 105: Radiation protection in medicine, Ann. ICRP, 37 (2007), 1-63.   Google Scholar

[28]

W. A. Kalender, Dose in x-ray computed tomography, Phys. Med. Biol., 59 (2014), R129–R150. doi: 10.1088/0031-9155/59/3/R129.  Google Scholar

[29]

K. KaliszS. HalliburtonS. AbbaraJ. A. LeipsicM. H. AlbrechtU. J. Schoepf and P. Rajiah, Update on cardiovascular applications of multienergy CT, RadioGraphics, 37 (2017), 1955-1974.  doi: 10.1148/rg.2017170100.  Google Scholar

[30]

D. Kazantsev, J. S. Jørgensen, M. S. Andersen, W. R. B. Lionheart, P. D. Lee and P. J. Withers, Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography, Inverse Problems, 34 (2018), 064001, 26 pp. doi: 10.1088/1361-6420/aaba86.  Google Scholar

[31]

K. KimJ. C. YeW. WorstellJ. OuyangY. RakvongthaiG. El Fakhri and Q. Li, Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty, IEEE Transactions on Medical Imaging, 34 (2015), 748-760.  doi: 10.1109/TMI.2014.2380993.  Google Scholar

[32]

V. KolehmainenM. J. Ehrhardt and S. R. Arridge, Incorporating structural prior information and sparsity into EIT using parallel level sets, Inverse Probl. Imaging, 13 (2019), 285-307.  doi: 10.3934/ipi.2019015.  Google Scholar

[33]

V. Kolehmainen, S. Siltanen, S. Järvenpää, J. P. Kaipio, P. Koistinen, M. Lassas, et al., Statistical inversion for medical x-ray tomography with few radiographs: Ⅱ. Application to dental radiology, Physics in Medicine & Biology, 48 (2003), 1465. doi: 10.1088/0031-9155/48/10/315.  Google Scholar

[34]

M. M. LellJ. E. WildbergerH. AlkadhiJ. Damilakis and M. Kachelriess, Evolution in computed tomography: The battle for speed and dose, Investigative Radiology, 50 (2015), 629-644.  doi: 10.1097/RLI.0000000000000172.  Google Scholar

[35]

D. MarinD. T. BollA. Mileto and R. C. Nelson, State of the art: Dual-energy CT of the abdomen, Radiology, 271 (2014), 327-342.  doi: 10.1148/radiol.14131480.  Google Scholar

[36]

C. H. McColloughG. H. ChenW. KalenderS. LengE. Samei and K. Taguchi, Achieving routine submillisievert CT scanning: Report from the summit on management of radiation dose in CT, Radiology, 264 (2012), 567-580.   Google Scholar

[37]

C. H. McColloughS. LengL. Yu and J. G. Fletcher, Dual- and multi-energy CT: Principles, technical approaches, and clinical applications, Radiology, 276 (2015), 637-653.  doi: 10.1148/radiol.2015142631.  Google Scholar

[38]

M. H. McKetty, The AAPM/RSNA physics tutorial for residents. X-ray attenuation, RadioGraphics, 18 (1998), 151-163.   Google Scholar

[39]

K. Michielsen, C. Fedon, J. Nagy and I. Sechopoulos, Dose reduction in breast CT by spectrum switching, in 14th International Workshop on Breast Imaging (IWBI 2018), 10718, Proc. SPIE, 2018, 107180J. Google Scholar

[40]

F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986.  Google Scholar

[41]

S. Nicolaou, T. Liang, D. T. Murphy, J. R. Korzan, H. Ouellette and P. Munk, Dual-energy CT: A promising new technique for assessment of the musculoskeletal system, American Journal of Roentgenology, 199 (2012), S78–S86. doi: 10.2214/AJR.12.9117.  Google Scholar

[42]

S. Niu, G. Yu, J. Ma and J. Wang, Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction, Inverse Problems, 34 (2018), 024003, 20 pp. doi: 10.1088/1361-6420/aa942c.  Google Scholar

[43]

NIST Physical Measurement Laboratory Radiation Physics Division, X-ray mass attenuation coefficients: NIST standard reference database 126, 2004, URL https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. Google Scholar

[44]

J. A. O'Sullivan and J. Benac, Alternating minimization algorithms for transmission tomography, IEEE Transactions on Medical Imaging, 26 (2007), 283-297.  doi: 10.1007/978-1-4615-5121-8_13.  Google Scholar

[45]

A. Pan, L. Xu, J. Lee, R. Gupta and G. Barbastathis, Structural similarity regularization of x-ray transport of intensity phase retrieval, in Classical Optics 2014, Optical Society of America, 2014, CW2C.4. doi: 10.1364/COSI.2014.CW2C.4.  Google Scholar

[46]

X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25 (2009), 123009, 36 pp. doi: 10.1088/0266-5611/25/12/123009.  Google Scholar

[47]

E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées, Rev. Française Informat. Recherche Opérationnelle, 3 (1969), 35–43.  Google Scholar

[48]

G. Poludniowski, G. Landry, F. DeBlois, P. M. Evans and F. Verhaegen, SpekCalc: A program to calculate photon spectra from tungsten anode x-ray tubes, Physics in Medicine & Biology, 54 (2009), N433–N438. doi: 10.1088/0031-9155/54/19/N01.  Google Scholar

[49]

A. A. Postma, P. A. M. Hofman, A. A. R. Stadler, R. J. van Oostenbrugge, M. P. M. Tijssen and J. E. Wildberger, Dual-energy CT of the brain and intracranial vessels, American Journal of Roentgenology, 199 (2012), S26–S33. doi: 10.2214/AJR.12.9115.  Google Scholar

[50]

J. Rasch, V. Kolehmainen, R. Nivajärvi, M. Kettunen, O. Gröhn, M. Burger and E.-M. Brinkmann, Dynamic MRI reconstruction from undersampled data with an anatomical prescan, Inverse Problems, 34 (2018), 074001, 30 pp. doi: 10.1088/1361-6420/aac3af.  Google Scholar

[51]

D. S. Rigie and P. J. La Riviére, Joint reconstruction of multi-channel, spectral CT data via constrained total nuclear variation minimization, Physics in Medicine & Biology, 60 (2015), 1741-1762.  doi: 10.1088/0031-9155/60/5/1741.  Google Scholar

[52]

D. S. RigieA. A. Sanchez and P. J. La Riviére, Assessment of vectorial total variation penalties on realistic dual-energy CT data, Physics in Medicine & Biology, 62 (2017), 3284-3298.  doi: 10.1088/1361-6560/aa6392.  Google Scholar

[53]

L. I. RudinS. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[54]

I. Sechopoulos and C. Ghetti, Optimization of the acquisition geometry in digital tomosynthesis of the breast, Medical Physics, 36 (2009), 1199-1207.  doi: 10.1118/1.3090889.  Google Scholar

[55]

W. P. SegarsM. MaheshT. J. BeckE. C. Frey and B. M. W. Tsui, Realistic CT simulation using the 4D XCAT phantom, Medical Physics, 35 (2008), 3800-3808.  doi: 10.1118/1.2955743.  Google Scholar

[56]

W. P. SegarsG. M. SturgeonS. MendoncaJ. Grimes and B. M. W. Tsui, 4D XCAT phantom for multimodality imaging research, Medical Physics, 37 (2010), 4902-4915.  doi: 10.1118/1.3480985.  Google Scholar

[57]

O. SemerciN. HaoM. E. Kilmer and E. L. Miller, Tensor-based formulation and nuclear norm regularization for multienergy computed tomography, IEEE Trans. Image Process., 23 (2014), 1678-1693.  doi: 10.1109/TIP.2014.2305840.  Google Scholar

[58]

E. Y. Sidky, J. H. Jørgensen and X. Pan, Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm, Physics in Medicine & Biology, 57 (2012), 3065. doi: 10.1088/0031-9155/57/10/3065.  Google Scholar

[59]

E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine & Biology, 53 (2008), 4777. doi: 10.1088/0031-9155/53/17/021.  Google Scholar

[60]

S. Siltanen, V. Kolehmainen, S. Järvenpää, J. Kaipio, P. Koistinen, M. Lassas, et al., Statistical inversion for medical x-ray tomography with few radiographs: Ⅰ. General theory, Physics in Medicine & Biology, 48 (2003), 1437. doi: 10.1088/0031-9155/48/10/314.  Google Scholar

[61]

R. SymonsB. KraussP. SahbaeeT. CorkM. N. LakshmananD. A. Bluemke and A. Pourmorteza, Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study, Med. Phys., 44 (2017), 5120-5127.   Google Scholar

[62]

M. TubianaL. E. FeinendegenC. Yang and J. M. Kaminski, The linear no-threshold relationship is inconsistent with radiation biologic and experimental data, Radiology, 251 (2009), 13-22.  doi: 10.1148/radiol.2511080671.  Google Scholar

[63]

W. van AarleW. J. PalenstijnJ. CantE. JanssensF. Bleichrodt and A. Dabravolski, Fast and flexible x-ray tomography using the ASTRA toolbox, Optics Express, 24 (2016), 25129-25147.   Google Scholar

[64]

W. van AarleW. J. PalenstijnJ. De BeenhouwerT. AltantzisS. BalsK. J. Batenburg and J. Sijbers, The ASTRA toolbox: A platform for advanced algorithm development in electron tomography, Ultramicroscopy, 157 (2015), 35-47.   Google Scholar

[65]

Z. Wang and A. C. Bovik, Mean squared error: Love it or leave it? A new look at signal fidelity measures, IEEE Signal Processing Magazine, 26 (2009), 98-117.   Google Scholar

[66]

Z. WangA. C. BovikH. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600-612.  doi: 10.1109/TIP.2003.819861.  Google Scholar

[67]

W. D. WongS. ShahN. MurrayF. WalstraF. Khosa and S. Nicolaou, Advanced musculoskeletal applications of dual-energy computed tomography, Radiol. Clin. North Am., 56 (2018), 587-600.  doi: 10.1016/j.rcl.2018.03.003.  Google Scholar

[68]

W. WuY. ZhangQ. WangF. LiuP. Chen and H. Yu, Low-dose spectral CT reconstruction using image gradient $\ell$0-norm and tensor dictionary, Appl. Math. Model., 63 (2018), 538-557.  doi: 10.1016/j.apm.2018.07.006.  Google Scholar

[69]

Q. Yang, W. Cong and G. Wang, Superiorization-based multi-energy CT image reconstruction, Inverse Problems, 33 (2017), 044014, 14 pp. doi: 10.1088/1361-6420/aa5e0a.  Google Scholar

[70]

S. YangY. SunY. Chen and L. Jiao, Structural similarity regularized and sparse coding based super-resolution for medical images, Biomedical Signal Processing and Control, 7 (2012), 579-590.  doi: 10.1016/j.bspc.2012.08.001.  Google Scholar

[71]

L. Yu, S. Leng and C. H. McCollough, Dual-energy CT-based monochromatic imaging, American Journal of Roentgenology, 199 (2012), S9–S15. doi: 10.2214/AJR.12.9121.  Google Scholar

[72]

Y. ZhangX. MouG. Wang and H. Yu, Tensor-based dictionary learning for spectral CT reconstruction, IEEE Transactions on Medical Imaging, 36 (2017), 142-154.  doi: 10.1109/TMI.2016.2600249.  Google Scholar

[73]

M. Zhu and T. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration, UCLA CAM Report, 34 (2008). Google Scholar

Figure 1.  Illustration of a spectrally non-overlapping projection sampling scheme for low dose multi-energy CT imaging. The X-ray source energies $ E_k, k = 1,2,3 $, are denoted by tube voltages $ \mathrm{kV}_1,\mathrm{kV}_2,\mathrm{kV}_3 $
Figure 2.  Left: The X-ray attenuation coefficients of water, soft tissue, and cortical bone as functions of X-ray energy. The raw data was obtained from NIST [43]. Right: Example of a realistic tungsten X-ray source spectrum with 120 kVp voltage and filtering (2.5 mm Al + 0.2 mm Cu), and monochromatic radiation with the same effective energy. The spectra were computed using the SpekCalc software [48]
Figure 3.  Reconstructed images for the simulation test case using 30 projection directions at each energy
Figure 4.  The RMS errors (left) and the mean SSIM indices (right) for the different reconstruction approaches using 30 projection directions at each energy
Figure 5.  Comparison of (TV) and (S+TV) reconstructions. Results labeled METHOD(90) are based on overall of $ 3\times 90 = 270 $ projection images using the same 90 directions for each energy. Results labeled METHOD(30W) are based on overall of 90 projections using the non-overlapping 30+30+30 directions (the same geometry that is used in Figure 3). Each image shows a region of interest of the full reconstruction
Figure 6.  Error metrics for the (TV) and (S+TV) reconstructions shown in Figure 5. Results labeled METHOD(90) are based on overall of $ 3\times 90 = 270 $ projection images using the same 90 directions for each energy. Results labeled METHOD(30W) are based on overall of 90 projections using the non-overlapping 30+30+30 directions
Figure 7.  Reconstructed images for the experimental data test case
Table 1.  Imaging geometry used for collecting the experimental data
Parameter Value
Focus-center distance 252 mm
Focus-detector distance 420 mm
Magnification 5/2
Detector pixel size 0.200 mm
Effective pixel size 0.120 mm
Projection size 552 $ \times $ 576 pixels
Angular range 360°
#projections 720
Parameter Value
Focus-center distance 252 mm
Focus-detector distance 420 mm
Magnification 5/2
Detector pixel size 0.200 mm
Effective pixel size 0.120 mm
Projection size 552 $ \times $ 576 pixels
Angular range 360°
#projections 720
Table 2.  Energy-specific settings used for collecting the experimental data
Energy $ U $ (kV) Filtration $ I $ (μA) Exposure time (ms) Frame averaging
$ E_1 $ 50 None 300 125 4
$ E_2 $ 80 1 mm Al 180 125 4
$ E_3 $ 120 0.5 mm Cu 120 250 4
Energy $ U $ (kV) Filtration $ I $ (μA) Exposure time (ms) Frame averaging
$ E_1 $ 50 None 300 125 4
$ E_2 $ 80 1 mm Al 180 125 4
$ E_3 $ 120 0.5 mm Cu 120 250 4
Table 3.  Selected $ \alpha $ and $ \gamma_k $ parameters for the different regularization terms for the simulated data test case ($ \alpha_{ \rm{SIM}}, \gamma_{k, \rm{SIM}} $) and for the experimental data test case ($ \alpha_{ \rm{EXP}}, \gamma_{k, \rm{EXP}} $). The three values of $ \gamma_k $ are for the three different tube energies with indices $ k = 1,2,3 $
Prior Acronym $ \alpha_{ \rm{SIM}} $ $ \gamma_{k, \rm{SIM}} $ $ \alpha_{ \rm{EXP}} $ $ \gamma_{k, \rm{EXP}} $
No prior No prior - - - -
Total variation TV - 2.25, 0.8, 0.7 - 1.0, 0.5, 0.25
Joint total variation JTV 2.25 0 1 0
Linear parallel level sets LPLS 4000 0 6000 0
First difference D1 400 0 100 0
Structural S 4e6 0 1e6 0
First difference + TV D1+TV 50 1.125, 0.4, 0.35 70 0.5, 0.25, 0.125
Structural + TV S+TV 0.75e5 1.125, 0.4, 0.35 0.5e6 0.5, 0.25, 0.125
Prior Acronym $ \alpha_{ \rm{SIM}} $ $ \gamma_{k, \rm{SIM}} $ $ \alpha_{ \rm{EXP}} $ $ \gamma_{k, \rm{EXP}} $
No prior No prior - - - -
Total variation TV - 2.25, 0.8, 0.7 - 1.0, 0.5, 0.25
Joint total variation JTV 2.25 0 1 0
Linear parallel level sets LPLS 4000 0 6000 0
First difference D1 400 0 100 0
Structural S 4e6 0 1e6 0
First difference + TV D1+TV 50 1.125, 0.4, 0.35 70 0.5, 0.25, 0.125
Structural + TV S+TV 0.75e5 1.125, 0.4, 0.35 0.5e6 0.5, 0.25, 0.125
Table 4.  Measurement angles used for energies $ E_1 $, $ E_2 $ and $ E_3 $ in the simulated data case (left) and experimental data case (right)
$ E_1 $ $ E_2 $ $ E_3 $ $ E_1 $ $ E_2 $ $ E_3 $
0 2 4 0 4 8
6 8 10 12 16 20
12 14 16 24 28 32
$ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
162 164 166 324 328 332
168 170 172 336 340 344
174 176 178 348 352 356
$ E_1 $ $ E_2 $ $ E_3 $ $ E_1 $ $ E_2 $ $ E_3 $
0 2 4 0 4 8
6 8 10 12 16 20
12 14 16 24 28 32
$ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $ $ \vdots $
162 164 166 324 328 332
168 170 172 336 340 344
174 176 178 348 352 356
[1]

Didi Lv, Qingping Zhou, Jae Kyu Choi, Jinglai Li, Xiaoqun Zhang. Nonlocal TV-Gaussian prior for Bayesian inverse problems with applications to limited CT reconstruction. Inverse Problems & Imaging, 2020, 14 (1) : 117-132. doi: 10.3934/ipi.2019066

[2]

Weina Wang, Chunlin Wu, Yiming Gao. A nonconvex truncated regularization and box-constrained model for CT reconstruction. Inverse Problems & Imaging, 2020, 14 (5) : 867-890. doi: 10.3934/ipi.2020040

[3]

Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495

[4]

Daniil Kazantsev, William M. Thompson, William R. B. Lionheart, Geert Van Eyndhoven, Anders P. Kaestner, Katherine J. Dobson, Philip J. Withers, Peter D. Lee. 4D-CT reconstruction with unified spatial-temporal patch-based regularization. Inverse Problems & Imaging, 2015, 9 (2) : 447-467. doi: 10.3934/ipi.2015.9.447

[5]

Luca Rondi. On the regularization of the inverse conductivity problem with discontinuous conductivities. Inverse Problems & Imaging, 2008, 2 (3) : 397-409. doi: 10.3934/ipi.2008.2.397

[6]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[7]

Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems & Imaging, 2019, 13 (3) : 449-460. doi: 10.3934/ipi.2019022

[8]

Ya-Zheng Dang, Zhong-Hui Xue, Yan Gao, Jun-Xiang Li. Fast self-adaptive regularization iterative algorithm for solving split feasibility problem. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1555-1569. doi: 10.3934/jimo.2019017

[9]

Ville Kolehmainen, Matthias J. Ehrhardt, Simon R. Arridge. Incorporating structural prior information and sparsity into EIT using parallel level sets. Inverse Problems & Imaging, 2019, 13 (2) : 285-307. doi: 10.3934/ipi.2019015

[10]

Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, Aria Abubakar. Electrical impedance tomography with multiplicative regularization. Inverse Problems & Imaging, 2019, 13 (6) : 1139-1159. doi: 10.3934/ipi.2019051

[11]

Shousheng Luo, Tie Zhou. Superiorization of EM algorithm and its application in Single-Photon Emission Computed Tomography(SPECT). Inverse Problems & Imaging, 2014, 8 (1) : 223-246. doi: 10.3934/ipi.2014.8.223

[12]

Michel Cristofol, Jimmy Garnier, François Hamel, Lionel Roques. Uniqueness from pointwise observations in a multi-parameter inverse problem. Communications on Pure & Applied Analysis, 2012, 11 (1) : 173-188. doi: 10.3934/cpaa.2012.11.173

[13]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[14]

Jussi Korpela, Matti Lassas, Lauri Oksanen. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Problems & Imaging, 2019, 13 (3) : 575-596. doi: 10.3934/ipi.2019027

[15]

Ville Kolehmainen, Matthias J. Ehrhardt, Simon R. Arridge. Corrigendum to "Incorporating structural prior information and sparsity into EIT using parallel level sets". Inverse Problems & Imaging, 2020, 14 (2) : 399-399. doi: 10.3934/ipi.2020018

[16]

Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63

[17]

Hui Huang, Eldad Haber, Lior Horesh. Optimal estimation of $\ell_1$-regularization prior from a regularized empirical Bayesian risk standpoint. Inverse Problems & Imaging, 2012, 6 (3) : 447-464. doi: 10.3934/ipi.2012.6.447

[18]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[19]

Bart Goossens, Demetrio Labate, Bernhard G Bodmann. Robust and stable region-of-interest tomographic reconstruction using a robust width prior. Inverse Problems & Imaging, 2020, 14 (2) : 291-316. doi: 10.3934/ipi.2020013

[20]

Alina Toma, Bruno Sixou, Françoise Peyrin. Iterative choice of the optimal regularization parameter in TV image restoration. Inverse Problems & Imaging, 2015, 9 (4) : 1171-1191. doi: 10.3934/ipi.2015.9.1171

2019 Impact Factor: 1.373

Article outline

Figures and Tables

[Back to Top]