August  2020, 14(4): 631-664. doi: 10.3934/ipi.2020029

Uniqueness results in the inverse spectral Steklov problem

Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, 2 Rue de la Houssinière BP 92208, F-44322 Nantes Cedex 03, France

Received  June 2019 Revised  January 2020 Published  May 2020

This paper is devoted to an inverse Steklov problem for a particular class of $ n $-dimensional manifolds having the topology of a hollow sphere and equipped with a warped product metric. We prove that the knowledge of the Steklov spectrum determines uniquely the associated warping function up to a natural invariance.

Citation: Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems & Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029
References:
[1]

M. S. Agranovich, On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain, Russ. J. Math. Phys., 13 (2006), 239-244.  doi: 10.1134/S1061920806030010.  Google Scholar

[2]

B. Colbois, A. Girouard and A. Hassannezhad, The Steklov and Laplacian spectra of Riemannian manifolds with boundary, J. Funct. Anal., 278 (2020), 108409. doi: 10.1016/j.jfa.2019.108409.  Google Scholar

[3]

T. Daudé, N. Kamran and F. Nicoleau, Non-uniqueness results in the anisotropic Calderón problem with data measured on disjoint sets, Annales de l'Institut Fourier, 69 (2015). Google Scholar

[4]

T. DaudéN. Kamran and F. Nicoleau, On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.  doi: 10.1007/s00023-018-00755-2.  Google Scholar

[5]

T. Daudé, N. Kamran and F. Nicoleau, Stability in the inverse Steklov problem on warped product Riemannian manifolds, preprint, arXiv: 1812.07235. Google Scholar

[6]

D. D. S. FerreiraC. KenigM. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[7]

A. GirouardJ. LagacéI. Polterovich and A. Savo, The Steklov spectrum of cuboids, Mathematika, 65 (2019), 272-310.  doi: 10.1112/S0025579318000414.  Google Scholar

[8]

A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory, 7 (2017), 321-360.  doi: 10.4171/JST/164.  Google Scholar

[9]

A. Jollivet and V. Sharafutdinov, On an inverse problem for the Steklov spectrum of a Riemannian surface, Contemp. Math., 615 (2014), 165-191.  doi: 10.1090/conm/615/12260.  Google Scholar

[10]

R. V. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123.   Google Scholar

[11]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.  doi: 10.1088/0266-5611/13/1/010.  Google Scholar

[12]

O. Parzanchevski, On G-sets and isospectrality, Ann. Inst. Fourier, 63 (2013), 2307-2329.  doi: 10.5802/aif.2831.  Google Scholar

[13]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, in Pure and Applied Mathematics, 130, Academic Press, Inc., Boston, MA, 1987.  Google Scholar

[14]

L. Provenzano and J. Stubbe, Weyl-type bounds for Steklov eigenvalues, J. Spectr. Theory, 9 (2019) 349–377. doi: 10.4171/JST/250.  Google Scholar

[15]

A. G. Ramm, An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys., 207 (1999), 231-247.  doi: 10.1007/s002200050725.  Google Scholar

[16]

Y. Safarov and D. Vassilev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, American Mathematical Society, Providence, RI, 1997.  Google Scholar

[17]

M. Salo, The Calderón problem on Riemannian manifolds, in Inverse Problems and Applications: Inside Out. II, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013,167–247.  Google Scholar

[18]

M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-96854-9.  Google Scholar

[19]

B. Simon, A new approach to inverse spectral theory. Ⅰ. Fundamental formalism, Ann. of Math., 150 (1999), 1029-1057.  doi: 10.2307/121061.  Google Scholar

[20]

G. Uhlmann, Recent progress in the anisotropic electrical impedance problem, in Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), J. Diff. Eqns., Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001,303–311.  Google Scholar

[21]

G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse problems, 25 (2009) 123011, 39 pp. doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

show all references

References:
[1]

M. S. Agranovich, On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain, Russ. J. Math. Phys., 13 (2006), 239-244.  doi: 10.1134/S1061920806030010.  Google Scholar

[2]

B. Colbois, A. Girouard and A. Hassannezhad, The Steklov and Laplacian spectra of Riemannian manifolds with boundary, J. Funct. Anal., 278 (2020), 108409. doi: 10.1016/j.jfa.2019.108409.  Google Scholar

[3]

T. Daudé, N. Kamran and F. Nicoleau, Non-uniqueness results in the anisotropic Calderón problem with data measured on disjoint sets, Annales de l'Institut Fourier, 69 (2015). Google Scholar

[4]

T. DaudéN. Kamran and F. Nicoleau, On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.  doi: 10.1007/s00023-018-00755-2.  Google Scholar

[5]

T. Daudé, N. Kamran and F. Nicoleau, Stability in the inverse Steklov problem on warped product Riemannian manifolds, preprint, arXiv: 1812.07235. Google Scholar

[6]

D. D. S. FerreiraC. KenigM. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[7]

A. GirouardJ. LagacéI. Polterovich and A. Savo, The Steklov spectrum of cuboids, Mathematika, 65 (2019), 272-310.  doi: 10.1112/S0025579318000414.  Google Scholar

[8]

A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory, 7 (2017), 321-360.  doi: 10.4171/JST/164.  Google Scholar

[9]

A. Jollivet and V. Sharafutdinov, On an inverse problem for the Steklov spectrum of a Riemannian surface, Contemp. Math., 615 (2014), 165-191.  doi: 10.1090/conm/615/12260.  Google Scholar

[10]

R. V. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123.   Google Scholar

[11]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.  doi: 10.1088/0266-5611/13/1/010.  Google Scholar

[12]

O. Parzanchevski, On G-sets and isospectrality, Ann. Inst. Fourier, 63 (2013), 2307-2329.  doi: 10.5802/aif.2831.  Google Scholar

[13]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, in Pure and Applied Mathematics, 130, Academic Press, Inc., Boston, MA, 1987.  Google Scholar

[14]

L. Provenzano and J. Stubbe, Weyl-type bounds for Steklov eigenvalues, J. Spectr. Theory, 9 (2019) 349–377. doi: 10.4171/JST/250.  Google Scholar

[15]

A. G. Ramm, An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys., 207 (1999), 231-247.  doi: 10.1007/s002200050725.  Google Scholar

[16]

Y. Safarov and D. Vassilev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, American Mathematical Society, Providence, RI, 1997.  Google Scholar

[17]

M. Salo, The Calderón problem on Riemannian manifolds, in Inverse Problems and Applications: Inside Out. II, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013,167–247.  Google Scholar

[18]

M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-96854-9.  Google Scholar

[19]

B. Simon, A new approach to inverse spectral theory. Ⅰ. Fundamental formalism, Ann. of Math., 150 (1999), 1029-1057.  doi: 10.2307/121061.  Google Scholar

[20]

G. Uhlmann, Recent progress in the anisotropic electrical impedance problem, in Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), J. Diff. Eqns., Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001,303–311.  Google Scholar

[21]

G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse problems, 25 (2009) 123011, 39 pp. doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

[1]

Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939

[2]

Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems & Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008

[3]

Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems & Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49

[4]

Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69

[5]

Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127

[6]

Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721

[7]

Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems & Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026

[8]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[9]

Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549

[10]

Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems & Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939

[11]

M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599

[12]

Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control & Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015

[13]

V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413

[14]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems & Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117

[15]

Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems & Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021

[16]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[17]

Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems & Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631

[18]

Tao Chen, Linda Keen. Slices of parameter spaces of generalized Nevanlinna functions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5659-5681. doi: 10.3934/dcds.2019248

[19]

Paolo Maremonti. On the Stokes problem in exterior domains: The maximum modulus theorem. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2135-2171. doi: 10.3934/dcds.2014.34.2135

[20]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. An existence theorem for the magneto-viscoelastic problem. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 435-447. doi: 10.3934/dcdss.2012.5.435

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (73)
  • HTML views (142)
  • Cited by (0)

Other articles
by authors

[Back to Top]