-
Previous Article
Thermoacoustic Tomography with circular integrating detectors and variable wave speed
- IPI Home
- This Issue
-
Next Article
Joint reconstruction in low dose multi-energy CT
Uniqueness results in the inverse spectral Steklov problem
Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, 2 Rue de la Houssinière BP 92208, F-44322 Nantes Cedex 03, France |
This paper is devoted to an inverse Steklov problem for a particular class of $ n $-dimensional manifolds having the topology of a hollow sphere and equipped with a warped product metric. We prove that the knowledge of the Steklov spectrum determines uniquely the associated warping function up to a natural invariance.
References:
[1] |
M. S. Agranovich,
On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain, Russ. J. Math. Phys., 13 (2006), 239-244.
doi: 10.1134/S1061920806030010. |
[2] |
B. Colbois, A. Girouard and A. Hassannezhad, The Steklov and Laplacian spectra of Riemannian manifolds with boundary, J. Funct. Anal., 278 (2020), 108409.
doi: 10.1016/j.jfa.2019.108409. |
[3] |
T. Daudé, N. Kamran and F. Nicoleau, Non-uniqueness results in the anisotropic Calderón problem with data measured on disjoint sets, Annales de l'Institut Fourier, 69 (2015). |
[4] |
T. Daudé, N. Kamran and F. Nicoleau,
On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.
doi: 10.1007/s00023-018-00755-2. |
[5] |
T. Daudé, N. Kamran and F. Nicoleau, Stability in the inverse Steklov problem on warped product Riemannian manifolds, preprint, arXiv: 1812.07235. |
[6] |
D. D. S. Ferreira, C. Kenig, M. Salo and G. Uhlmann,
Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.
doi: 10.1007/s00222-009-0196-4. |
[7] |
A. Girouard, J. Lagacé, I. Polterovich and A. Savo,
The Steklov spectrum of cuboids, Mathematika, 65 (2019), 272-310.
doi: 10.1112/S0025579318000414. |
[8] |
A. Girouard and I. Polterovich,
Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory, 7 (2017), 321-360.
doi: 10.4171/JST/164. |
[9] |
A. Jollivet and V. Sharafutdinov,
On an inverse problem for the Steklov spectrum of a Riemannian surface, Contemp. Math., 615 (2014), 165-191.
doi: 10.1090/conm/615/12260. |
[10] |
R. V. Kohn and M. Vogelius,
Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123.
|
[11] |
W. R. B. Lionheart,
Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.
doi: 10.1088/0266-5611/13/1/010. |
[12] |
O. Parzanchevski,
On G-sets and isospectrality, Ann. Inst. Fourier, 63 (2013), 2307-2329.
doi: 10.5802/aif.2831. |
[13] |
J. Pöschel and E. Trubowitz, Inverse Spectral Theory, in Pure and Applied Mathematics, 130, Academic Press, Inc., Boston, MA, 1987. |
[14] |
L. Provenzano and J. Stubbe, Weyl-type bounds for Steklov eigenvalues, J. Spectr. Theory, 9 (2019) 349–377.
doi: 10.4171/JST/250. |
[15] |
A. G. Ramm,
An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys., 207 (1999), 231-247.
doi: 10.1007/s002200050725. |
[16] |
Y. Safarov and D. Vassilev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, American Mathematical Society, Providence, RI, 1997. |
[17] |
M. Salo, The Calderón problem on Riemannian manifolds, in Inverse Problems and Applications: Inside Out. II, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013,167–247. |
[18] |
M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-96854-9. |
[19] |
B. Simon,
A new approach to inverse spectral theory. Ⅰ. Fundamental formalism, Ann. of Math., 150 (1999), 1029-1057.
doi: 10.2307/121061. |
[20] |
G. Uhlmann, Recent progress in the anisotropic electrical impedance problem, in Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), J. Diff. Eqns., Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001,303–311. |
[21] |
G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse problems, 25 (2009) 123011, 39 pp.
doi: 10.1088/0266-5611/25/12/123011. |
show all references
References:
[1] |
M. S. Agranovich,
On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain, Russ. J. Math. Phys., 13 (2006), 239-244.
doi: 10.1134/S1061920806030010. |
[2] |
B. Colbois, A. Girouard and A. Hassannezhad, The Steklov and Laplacian spectra of Riemannian manifolds with boundary, J. Funct. Anal., 278 (2020), 108409.
doi: 10.1016/j.jfa.2019.108409. |
[3] |
T. Daudé, N. Kamran and F. Nicoleau, Non-uniqueness results in the anisotropic Calderón problem with data measured on disjoint sets, Annales de l'Institut Fourier, 69 (2015). |
[4] |
T. Daudé, N. Kamran and F. Nicoleau,
On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.
doi: 10.1007/s00023-018-00755-2. |
[5] |
T. Daudé, N. Kamran and F. Nicoleau, Stability in the inverse Steklov problem on warped product Riemannian manifolds, preprint, arXiv: 1812.07235. |
[6] |
D. D. S. Ferreira, C. Kenig, M. Salo and G. Uhlmann,
Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.
doi: 10.1007/s00222-009-0196-4. |
[7] |
A. Girouard, J. Lagacé, I. Polterovich and A. Savo,
The Steklov spectrum of cuboids, Mathematika, 65 (2019), 272-310.
doi: 10.1112/S0025579318000414. |
[8] |
A. Girouard and I. Polterovich,
Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory, 7 (2017), 321-360.
doi: 10.4171/JST/164. |
[9] |
A. Jollivet and V. Sharafutdinov,
On an inverse problem for the Steklov spectrum of a Riemannian surface, Contemp. Math., 615 (2014), 165-191.
doi: 10.1090/conm/615/12260. |
[10] |
R. V. Kohn and M. Vogelius,
Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123.
|
[11] |
W. R. B. Lionheart,
Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.
doi: 10.1088/0266-5611/13/1/010. |
[12] |
O. Parzanchevski,
On G-sets and isospectrality, Ann. Inst. Fourier, 63 (2013), 2307-2329.
doi: 10.5802/aif.2831. |
[13] |
J. Pöschel and E. Trubowitz, Inverse Spectral Theory, in Pure and Applied Mathematics, 130, Academic Press, Inc., Boston, MA, 1987. |
[14] |
L. Provenzano and J. Stubbe, Weyl-type bounds for Steklov eigenvalues, J. Spectr. Theory, 9 (2019) 349–377.
doi: 10.4171/JST/250. |
[15] |
A. G. Ramm,
An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys., 207 (1999), 231-247.
doi: 10.1007/s002200050725. |
[16] |
Y. Safarov and D. Vassilev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, American Mathematical Society, Providence, RI, 1997. |
[17] |
M. Salo, The Calderón problem on Riemannian manifolds, in Inverse Problems and Applications: Inside Out. II, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013,167–247. |
[18] |
M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987.
doi: 10.1007/978-3-642-96854-9. |
[19] |
B. Simon,
A new approach to inverse spectral theory. Ⅰ. Fundamental formalism, Ann. of Math., 150 (1999), 1029-1057.
doi: 10.2307/121061. |
[20] |
G. Uhlmann, Recent progress in the anisotropic electrical impedance problem, in Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), J. Diff. Eqns., Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001,303–311. |
[21] |
G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse problems, 25 (2009) 123011, 39 pp.
doi: 10.1088/0266-5611/25/12/123011. |
[1] |
Yuri Latushkin, Alim Sukhtayev. The Evans function and the Weyl-Titchmarsh function. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 939-970. doi: 10.3934/dcdss.2012.5.939 |
[2] |
Matteo Santacesaria. Note on Calderón's inverse problem for measurable conductivities. Inverse Problems and Imaging, 2019, 13 (1) : 149-157. doi: 10.3934/ipi.2019008 |
[3] |
Albert Clop, Daniel Faraco, Alberto Ruiz. Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities. Inverse Problems and Imaging, 2010, 4 (1) : 49-91. doi: 10.3934/ipi.2010.4.49 |
[4] |
Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69 |
[5] |
Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure and Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127 |
[6] |
Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721 |
[7] |
Petteri Piiroinen, Martin Simon. Probabilistic interpretation of the Calderón problem. Inverse Problems and Imaging, 2017, 11 (3) : 553-575. doi: 10.3934/ipi.2017026 |
[8] |
Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165 |
[9] |
Stefano Bianchini, Daniela Tonon. A decomposition theorem for $BV$ functions. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1549-1566. doi: 10.3934/cpaa.2011.10.1549 |
[10] |
M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599 |
[11] |
Pedro Caro, Mikko Salo. Stability of the Calderón problem in admissible geometries. Inverse Problems and Imaging, 2014, 8 (4) : 939-957. doi: 10.3934/ipi.2014.8.939 |
[12] |
Yavar Kian, Morgan Morancey, Lauri Oksanen. Application of the boundary control method to partial data Borg-Levinson inverse spectral problem. Mathematical Control and Related Fields, 2019, 9 (2) : 289-312. doi: 10.3934/mcrf.2019015 |
[13] |
V. Niţicâ. Journé's theorem for $C^{n,\omega}$ regularity. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 413-425. doi: 10.3934/dcds.2008.22.413 |
[14] |
Md. Ibrahim Kholil, Ziqi Sun. A uniqueness theorem for inverse problems in quasilinear anisotropic media. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022008 |
[15] |
Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011 |
[16] |
Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems and Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631 |
[17] |
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 1117-1137. doi: 10.3934/ipi.2014.8.1117 |
[18] |
Yernat M. Assylbekov. Reconstruction in the partial data Calderón problem on admissible manifolds. Inverse Problems and Imaging, 2017, 11 (3) : 455-476. doi: 10.3934/ipi.2017021 |
[19] |
Henrik Garde, Nuutti Hyvönen. Reconstruction of singular and degenerate inclusions in Calderón's problem. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022021 |
[20] |
Kim Knudsen, Aksel Kaastrup Rasmussen. Direct regularized reconstruction for the three-dimensional Calderón problem. Inverse Problems and Imaging, 2022, 16 (4) : 871-894. doi: 10.3934/ipi.2022002 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]