August  2020, 14(4): 631-664. doi: 10.3934/ipi.2020029

Uniqueness results in the inverse spectral Steklov problem

Laboratoire de Mathématiques Jean Leray, UMR CNRS 6629, 2 Rue de la Houssinière BP 92208, F-44322 Nantes Cedex 03, France

Received  June 2019 Revised  January 2020 Published  May 2020

This paper is devoted to an inverse Steklov problem for a particular class of $ n $-dimensional manifolds having the topology of a hollow sphere and equipped with a warped product metric. We prove that the knowledge of the Steklov spectrum determines uniquely the associated warping function up to a natural invariance.

Citation: Germain Gendron. Uniqueness results in the inverse spectral Steklov problem. Inverse Problems & Imaging, 2020, 14 (4) : 631-664. doi: 10.3934/ipi.2020029
References:
[1]

M. S. Agranovich, On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain, Russ. J. Math. Phys., 13 (2006), 239-244.  doi: 10.1134/S1061920806030010.  Google Scholar

[2]

B. Colbois, A. Girouard and A. Hassannezhad, The Steklov and Laplacian spectra of Riemannian manifolds with boundary, J. Funct. Anal., 278 (2020), 108409. doi: 10.1016/j.jfa.2019.108409.  Google Scholar

[3]

T. Daudé, N. Kamran and F. Nicoleau, Non-uniqueness results in the anisotropic Calderón problem with data measured on disjoint sets, Annales de l'Institut Fourier, 69 (2015). Google Scholar

[4]

T. DaudéN. Kamran and F. Nicoleau, On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.  doi: 10.1007/s00023-018-00755-2.  Google Scholar

[5]

T. Daudé, N. Kamran and F. Nicoleau, Stability in the inverse Steklov problem on warped product Riemannian manifolds, preprint, arXiv: 1812.07235. Google Scholar

[6]

D. D. S. FerreiraC. KenigM. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[7]

A. GirouardJ. LagacéI. Polterovich and A. Savo, The Steklov spectrum of cuboids, Mathematika, 65 (2019), 272-310.  doi: 10.1112/S0025579318000414.  Google Scholar

[8]

A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory, 7 (2017), 321-360.  doi: 10.4171/JST/164.  Google Scholar

[9]

A. Jollivet and V. Sharafutdinov, On an inverse problem for the Steklov spectrum of a Riemannian surface, Contemp. Math., 615 (2014), 165-191.  doi: 10.1090/conm/615/12260.  Google Scholar

[10]

R. V. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123.   Google Scholar

[11]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.  doi: 10.1088/0266-5611/13/1/010.  Google Scholar

[12]

O. Parzanchevski, On G-sets and isospectrality, Ann. Inst. Fourier, 63 (2013), 2307-2329.  doi: 10.5802/aif.2831.  Google Scholar

[13]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, in Pure and Applied Mathematics, 130, Academic Press, Inc., Boston, MA, 1987.  Google Scholar

[14]

L. Provenzano and J. Stubbe, Weyl-type bounds for Steklov eigenvalues, J. Spectr. Theory, 9 (2019) 349–377. doi: 10.4171/JST/250.  Google Scholar

[15]

A. G. Ramm, An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys., 207 (1999), 231-247.  doi: 10.1007/s002200050725.  Google Scholar

[16]

Y. Safarov and D. Vassilev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, American Mathematical Society, Providence, RI, 1997.  Google Scholar

[17]

M. Salo, The Calderón problem on Riemannian manifolds, in Inverse Problems and Applications: Inside Out. II, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013,167–247.  Google Scholar

[18]

M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-96854-9.  Google Scholar

[19]

B. Simon, A new approach to inverse spectral theory. Ⅰ. Fundamental formalism, Ann. of Math., 150 (1999), 1029-1057.  doi: 10.2307/121061.  Google Scholar

[20]

G. Uhlmann, Recent progress in the anisotropic electrical impedance problem, in Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), J. Diff. Eqns., Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001,303–311.  Google Scholar

[21]

G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse problems, 25 (2009) 123011, 39 pp. doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

show all references

References:
[1]

M. S. Agranovich, On a mixed Poincaré-Steklov type spectral problem in a Lipschitz domain, Russ. J. Math. Phys., 13 (2006), 239-244.  doi: 10.1134/S1061920806030010.  Google Scholar

[2]

B. Colbois, A. Girouard and A. Hassannezhad, The Steklov and Laplacian spectra of Riemannian manifolds with boundary, J. Funct. Anal., 278 (2020), 108409. doi: 10.1016/j.jfa.2019.108409.  Google Scholar

[3]

T. Daudé, N. Kamran and F. Nicoleau, Non-uniqueness results in the anisotropic Calderón problem with data measured on disjoint sets, Annales de l'Institut Fourier, 69 (2015). Google Scholar

[4]

T. DaudéN. Kamran and F. Nicoleau, On the hidden mechanism behind non-uniqueness for the anisotropic Calderón problem with data on disjoint sets, Ann. Henri Poincaré, 20 (2019), 859-887.  doi: 10.1007/s00023-018-00755-2.  Google Scholar

[5]

T. Daudé, N. Kamran and F. Nicoleau, Stability in the inverse Steklov problem on warped product Riemannian manifolds, preprint, arXiv: 1812.07235. Google Scholar

[6]

D. D. S. FerreiraC. KenigM. Salo and G. Uhlmann, Limiting Carleman weights and anisotropic inverse problems, Invent. Math., 178 (2009), 119-171.  doi: 10.1007/s00222-009-0196-4.  Google Scholar

[7]

A. GirouardJ. LagacéI. Polterovich and A. Savo, The Steklov spectrum of cuboids, Mathematika, 65 (2019), 272-310.  doi: 10.1112/S0025579318000414.  Google Scholar

[8]

A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey article), J. Spectr. Theory, 7 (2017), 321-360.  doi: 10.4171/JST/164.  Google Scholar

[9]

A. Jollivet and V. Sharafutdinov, On an inverse problem for the Steklov spectrum of a Riemannian surface, Contemp. Math., 615 (2014), 165-191.  doi: 10.1090/conm/615/12260.  Google Scholar

[10]

R. V. Kohn and M. Vogelius, Identification of an unknown conductivity by means of measurements at the boundary, SIAM-AMS Proc., 14 (1984), 113-123.   Google Scholar

[11]

W. R. B. Lionheart, Conformal uniqueness results in anisotropic electrical impedance imaging, Inverse Problems, 13 (1997), 125-134.  doi: 10.1088/0266-5611/13/1/010.  Google Scholar

[12]

O. Parzanchevski, On G-sets and isospectrality, Ann. Inst. Fourier, 63 (2013), 2307-2329.  doi: 10.5802/aif.2831.  Google Scholar

[13]

J. Pöschel and E. Trubowitz, Inverse Spectral Theory, in Pure and Applied Mathematics, 130, Academic Press, Inc., Boston, MA, 1987.  Google Scholar

[14]

L. Provenzano and J. Stubbe, Weyl-type bounds for Steklov eigenvalues, J. Spectr. Theory, 9 (2019) 349–377. doi: 10.4171/JST/250.  Google Scholar

[15]

A. G. Ramm, An inverse scattering problem with part of the fixed-energy phase shifts, Comm. Math. Phys., 207 (1999), 231-247.  doi: 10.1007/s002200050725.  Google Scholar

[16]

Y. Safarov and D. Vassilev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators, American Mathematical Society, Providence, RI, 1997.  Google Scholar

[17]

M. Salo, The Calderón problem on Riemannian manifolds, in Inverse Problems and Applications: Inside Out. II, Math. Sci. Res. Inst. Publ., 60, Cambridge Univ. Press, Cambridge, 2013,167–247.  Google Scholar

[18]

M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987. doi: 10.1007/978-3-642-96854-9.  Google Scholar

[19]

B. Simon, A new approach to inverse spectral theory. Ⅰ. Fundamental formalism, Ann. of Math., 150 (1999), 1029-1057.  doi: 10.2307/121061.  Google Scholar

[20]

G. Uhlmann, Recent progress in the anisotropic electrical impedance problem, in Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Viña del Mar-Valparaiso, 2000), J. Diff. Eqns., Conf., 6, Southwest Texas State Univ., San Marcos, TX, 2001,303–311.  Google Scholar

[21]

G. Uhlmann, Electrical impedance tomography and Calderón's problem, Inverse problems, 25 (2009) 123011, 39 pp. doi: 10.1088/0266-5611/25/12/123011.  Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[5]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[6]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[7]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[8]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[9]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[10]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[15]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[18]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[19]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[20]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (81)
  • HTML views (142)
  • Cited by (0)

Other articles
by authors

[Back to Top]