[1]
|
J. Adler and O. Öktem, Learned primal-dual reconstruction, IEEE Transactions on Medical Imaging, 37 (2018), 1322-1332.
doi: 10.1109/TMI.2018.2799231.
|
[2]
|
J. Adler and O. Öktem, Solving ill-posed inverse problems using iterative deep neural networks, Inverse Problems, 33 (2017), 124007, 24 pp.
doi: 10.1088/1361-6420/aa9581.
|
[3]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends® in Machine Learning, 3 (2011), 1–122.
|
[4]
|
J.-F. Cai, B. Dong, S. Osher and Z. Shen, Image restoration: Total variation, wavelet frames, and beyond, J. Amer. Math. Soc., 25 (2012), 1033-1089.
doi: 10.1090/S0894-0347-2012-00740-1.
|
[5]
|
J.-F. Cai, H. Ji, Z. Shen and G.-B. Ye, Data-driven tight frame construction and image denoising, Appl. Comput. Harmon. Anal., 37 (2014), 89-105.
doi: 10.1016/j.acha.2013.10.001.
|
[6]
|
N. Cao, A. Nehorai and M. Jacob, Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm, Optics Express, 15 (2007), 13695-13708.
doi: 10.1364/OE.15.013695.
|
[7]
|
K. Dabov, A. Foi, V. Katkovnik and K. Egiazarian, Image denoising with block-matching and 3d filtering, in Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, 6064, Proc. SPIE, 2006, 606414.
doi: 10.1117/12.643267.
|
[8]
|
D. Davis and W. Yin, A three-operator splitting scheme and its optimization applications, Set-Valued Var. Anal., 25 (2017), 829-858.
doi: 10.1007/s11228-017-0421-z.
|
[9]
|
T. Goldstein and S. Osher, The split Bregman method for $L1$-regularized problems, SIAM J. Imaging Sci., 2 (2009), 323-343.
doi: 10.1137/080725891.
|
[10]
|
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al., Generative adversarial nets, in Advances in Neural Information Processing Systems, 2014, 2672–2680.
|
[11]
|
I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A. Courville, Improved training of Wasserstein GANs, preprint, arXiv: 1704.00028.
|
[12]
|
K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock and F. Knoll, Learning a variational network for reconstruction of accelerated MRI data, Magnetic Resonance in Medicine, 79 (2018), 3055-3071.
doi: 10.1007/978-3-319-66709-6.
|
[13]
|
K. H. Jin, M. T. McCann, E. Froustey and M. Unser, Deep convolutional neural network for inverse problems in imaging, IEEE Trans. Image Process., 26 (2017), 4509-4522.
doi: 10.1109/TIP.2017.2713099.
|
[14]
|
E. Kang, J. Min and J. C. Ye, A deep convolutional neural network using directional wavelets for low-dose x-ray CT reconstruction, Medical Physics, 44 (2017), e360–e375.
doi: 10.1002/mp.12344.
|
[15]
|
V. Kolehmainen, M. Vauhkonen, J. P. Kaipio and S. R. Arridge, Recovery of piecewise constant coefficients in optical diffusion tomography, Optics Express, 7 (2000), 468-480.
doi: 10.1364/OE.7.000468.
|
[16]
|
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, et al., Photo-realistic single image super-resolution using a generative adversarial network, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017), 105–114.
doi: 10.1109/CVPR.2017.19.
|
[17]
|
P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964-979.
doi: 10.1137/0716071.
|
[18]
|
J. Liu, Y. Hu, J. Yang, Y. Chen, H. Shu, L. Luo, et al., 3d feature constrained reconstruction for low-dose CT imaging, IEEE Transactions on Circuits and Systems for Video Technology, 28 (2018), 1232–1247.
doi: 10.1109/TCSVT.2016.2643009.
|
[19]
|
J. Liu, A. I. Aviles-Rivero, H. Ji and C.-B. Schönlieb, Rethinking medical image reconstruction via shape prior, going deeper and faster: Deep joint indirect registration and reconstruction, preprint, arXiv: 1912.07648.
doi: 10.1016/j.mathsocsci.2015.03.001.
|
[20]
|
J. Liu, H. Ding, S. Molloi, X. Zhang and H. Gao, TICMR: Total image constrained material reconstruction via nonlocal total variation regularization for spectral CT, IEEE Transactions on Medical Imaging, 35 (2016), 2578-2586.
doi: 10.1109/TMI.2016.2587661.
|
[21]
|
J. Liu, T. Kuang and X. Zhang, Image reconstruction by splitting deep learning regularization from iterative inversion, in Medical Image Computing and Computer Assisted Intervention, 11070, Lecture Notes in Computer Science, Springer, Cham, 2018,224–231.
doi: 10.1007/978-3-030-00928-1_26.
|
[22]
|
T. Liu, M. Gong and D. Tao, Large-cone nonnegative matrix factorization, IEEE Trans. Neural Netw. Learn. Syst., 28 (2017), 2129-2142.
doi: 10.1109/tnnls.2016.2514360.
|
[23]
|
T. Meinhardt, M. Moller, C. Hazirbas and D. Cremers, Learning proximal operators: Using denoising networks for regularizing inverse imaging problems, in IEEE International Conference on Computer Vision (ICCV), 2017, 1781–1790.
doi: 10.1109/ICCV.2017.198.
|
[24]
|
W. Mo and N. Chen, Design of an advanced time-domain diffuse optical tomography system, IEEE Journal of Selected Topics in Quantum Electronics, 16 (2010), 581-587.
|
[25]
|
S. Nowozin, B. Cseke and R. Tomioka, f-GAN: Training generative neural samplers using variational divergence minimization, in Advances in Neural Information Processing Systems, 2016,271–279.
|
[26]
|
O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-Assisted Intervention, 9351, Lecture Notes in Computer Science, Springer, Cham, 2015,234–241.
doi: 10.1007/978-3-319-24574-4_28.
|
[27]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[28]
|
J. Sun, H. Li, Z. Xu and Y. Yang, Deep ADMM-Net for compressive sensing MRI, in Advances in Neural Information Processing Systems, 2016, 10–18.
|
[29]
|
A. N. Tihonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4 (1963), 1035-1038.
|
[30]
|
P. Vincent, H. Larochelle, Y. Bengio and P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in Proceedings of the 25th International Conference on Machine learning, ACM, 2008, 1096–1103.
doi: 10.1145/1390156.1390294.
|
[31]
|
J. Xie, L. Xu and E. Chen, Image denoising and inpainting with deep neural networks, in Advances in Neural Information Processing Systems, 2012,341–349.
|
[32]
|
X. Yang, R. Kwitt, M. Styner and M. Niethammer, Quicksilver: Fast predictive image registration– A deep learning approach, NeuroImage, 158 (2017), 378-396.
doi: 10.1016/j.neuroimage.2017.07.008.
|
[33]
|
J. Yoo, S. Sabir, D. Heo, K. H. Kim, A. Wahab, Y. Choi, et al., Deep learning diffuse optical tomography, IEEE Transactions on Medical Imaging, 39 (2020), 877–887.
doi: 10.1109/TMI.2019.2936522.
|