August  2020, 14(4): 719-731. doi: 10.3934/ipi.2020033

Extended sampling method for interior inverse scattering problems

College of Mathematics and Statistics, Chongqing University, Chongqing 400044, China

* Corresponding author: fzeng@cqu.edu.cn

Received  September 2019 Revised  February 2020 Published  May 2020

We consider an interior inverse scattering problem of reconstructing the shape of a cavity. The measurements are the scattered fields on a curve inside the cavity due to only one point source. In this paper, we employ the extending sampling method to reconstruct the cavity based on limited data. Numerical examples are provided to show the effectiveness of the method.

Citation: Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems & Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033
References:
[1]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[2]

F. CakoniD. Colton and S. Meng, The inverse scattering problem for a penetrable cavity with internal measurements, Contemp. Math., 615 (2014), 71-88.  doi: 10.1090/conm/615/12246.  Google Scholar

[3]

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[4]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2$^{nd}$ edition, Applied Mathematical Sciences, 93, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[5]

J. Elschner and G. Hu, Global uniqueness in determining polygonal periodic structures with a minimal number of incident plane waves, Inverse Problems, 26 (2010), 115002, 23 pp. doi: 10.1088/0266-5611/26/11/115002.  Google Scholar

[6]

J. LiuX. Liu and J. Sun, Extended sampling method for inverse elastic scattering problems using one incident wave, SIAM J. Imaging Sci., 12 (2019), 874-892.  doi: 10.1137/19M1237788.  Google Scholar

[7]

S. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20 pp. doi: 10.1088/0266-5611/30/4/045008.  Google Scholar

[8]

Y. HuF. Cakoni and J. Liu, The inverse scattering problem for a partially coated cavity with interior measurements, Appl. Anal., 93 (2013), 936-956.  doi: 10.1080/00036811.2013.801458.  Google Scholar

[9]

G. Hu and X. Liu, Unique determination of balls and polyhedral scatterers with a single point source wave, Inverse Problems, 30 (2014), 065010, 14 pp. doi: 10.1088/0266-5611/30/6/065010.  Google Scholar

[10]

P. Jakubik and R. Potthast, Testing the integrity of some cavity – the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008), 899-914.  doi: 10.1016/j.apnum.2007.04.007.  Google Scholar

[11]

X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18 pp. doi: 10.1088/0266-5611/30/1/015006.  Google Scholar

[12]

J. Liu and J. Sun, Extended sampling method in inverse scattering, Inverse Problems, 34 (2018), 085007, 17 pp. doi: 10.1088/1361-6420/aaca90.  Google Scholar

[13]

P. Li and Y. Wang, Near-field imaging of interior cavities, Commun. Comput. Phys., 17 (2015), 542-563.  doi: 10.4208/cicp.010414.250914a.  Google Scholar

[14]

H.-H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17 pp. doi: 10.1088/0266-5611/27/3/035005.  Google Scholar

[15]

H.-H. Qin and D. Colton, The inverse scattering problem for cavities, Appl. Numer. Math., 62 (2012), 699-708.  doi: 10.1016/j.apnum.2010.10.011.  Google Scholar

[16]

H.-H. Qin and D. Colton, The inverse scattering problem for cavities with impedance boundary condition, Adv. Comput. Math., 36 (2012), 157-174.  doi: 10.1007/s10444-011-9179-2.  Google Scholar

[17]

H.-H. Qin and X. Liu, The interior inverse scattering problem for cavities with an artificial obstacle, Appl. Numer. Math., 88 (2015), 18-30.  doi: 10.1016/j.apnum.2014.10.002.  Google Scholar

[18]

Y. SunY. Guo and F. Ma, The reciprocity gap functional method for the inverse scattering problem for cavities, Appl. Anal., 95 (2016), 1327-1346.  doi: 10.1080/00036811.2015.1064519.  Google Scholar

[19]

F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002, 17 pp. doi: 10.1088/0266-5611/27/12/125002.  Google Scholar

[20]

F. ZengP. Suarez and J. Sun, A decomposition method for an interior inverse scattering problem, Inverse Probl. and Imaging, 7 (2013), 291-303.  doi: 10.3934/ipi.2013.7.291.  Google Scholar

[21]

F. ZengX. LiuJ. Sun and L. Xu, The reciprocity gap method for a cavity in an inhomogeneous medium, Inverse Probl. Imaging, 10 (2016), 855-868.  doi: 10.3934/ipi.2016024.  Google Scholar

[22]

F. ZengX. LiuJ. Sun and L. Xu, Reciprocity gap method for an interior inverse scattering problem, J. Inverse Ill-Posed Probl., 25 (2017), 57-68.  doi: 10.1515/jiip-2015-0064.  Google Scholar

show all references

References:
[1]

F. Cakoni and D. Colton, A Qualitative Approach to Inverse Scattering Theory, Springer, New York, 2014. doi: 10.1007/978-1-4614-8827-9.  Google Scholar

[2]

F. CakoniD. Colton and S. Meng, The inverse scattering problem for a penetrable cavity with internal measurements, Contemp. Math., 615 (2014), 71-88.  doi: 10.1090/conm/615/12246.  Google Scholar

[3]

D. L. Colton and R. Kress, Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[4]

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2$^{nd}$ edition, Applied Mathematical Sciences, 93, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-03537-5.  Google Scholar

[5]

J. Elschner and G. Hu, Global uniqueness in determining polygonal periodic structures with a minimal number of incident plane waves, Inverse Problems, 26 (2010), 115002, 23 pp. doi: 10.1088/0266-5611/26/11/115002.  Google Scholar

[6]

J. LiuX. Liu and J. Sun, Extended sampling method for inverse elastic scattering problems using one incident wave, SIAM J. Imaging Sci., 12 (2019), 874-892.  doi: 10.1137/19M1237788.  Google Scholar

[7]

S. Meng, H. Haddar and F. Cakoni, The factorization method for a cavity in an inhomogeneous medium, Inverse Problems, 30 (2014), 045008, 20 pp. doi: 10.1088/0266-5611/30/4/045008.  Google Scholar

[8]

Y. HuF. Cakoni and J. Liu, The inverse scattering problem for a partially coated cavity with interior measurements, Appl. Anal., 93 (2013), 936-956.  doi: 10.1080/00036811.2013.801458.  Google Scholar

[9]

G. Hu and X. Liu, Unique determination of balls and polyhedral scatterers with a single point source wave, Inverse Problems, 30 (2014), 065010, 14 pp. doi: 10.1088/0266-5611/30/6/065010.  Google Scholar

[10]

P. Jakubik and R. Potthast, Testing the integrity of some cavity – the Cauchy problem and the range test, Appl. Numer. Math., 58 (2008), 899-914.  doi: 10.1016/j.apnum.2007.04.007.  Google Scholar

[11]

X. Liu, The factorization method for cavities, Inverse Problems, 30 (2014), 015006, 18 pp. doi: 10.1088/0266-5611/30/1/015006.  Google Scholar

[12]

J. Liu and J. Sun, Extended sampling method in inverse scattering, Inverse Problems, 34 (2018), 085007, 17 pp. doi: 10.1088/1361-6420/aaca90.  Google Scholar

[13]

P. Li and Y. Wang, Near-field imaging of interior cavities, Commun. Comput. Phys., 17 (2015), 542-563.  doi: 10.4208/cicp.010414.250914a.  Google Scholar

[14]

H.-H. Qin and F. Cakoni, Nonlinear integral equations for shape reconstruction in the inverse interior scattering problem, Inverse Problems, 27 (2011), 035005, 17 pp. doi: 10.1088/0266-5611/27/3/035005.  Google Scholar

[15]

H.-H. Qin and D. Colton, The inverse scattering problem for cavities, Appl. Numer. Math., 62 (2012), 699-708.  doi: 10.1016/j.apnum.2010.10.011.  Google Scholar

[16]

H.-H. Qin and D. Colton, The inverse scattering problem for cavities with impedance boundary condition, Adv. Comput. Math., 36 (2012), 157-174.  doi: 10.1007/s10444-011-9179-2.  Google Scholar

[17]

H.-H. Qin and X. Liu, The interior inverse scattering problem for cavities with an artificial obstacle, Appl. Numer. Math., 88 (2015), 18-30.  doi: 10.1016/j.apnum.2014.10.002.  Google Scholar

[18]

Y. SunY. Guo and F. Ma, The reciprocity gap functional method for the inverse scattering problem for cavities, Appl. Anal., 95 (2016), 1327-1346.  doi: 10.1080/00036811.2015.1064519.  Google Scholar

[19]

F. Zeng, F. Cakoni and J. Sun, An inverse electromagnetic scattering problem for a cavity, Inverse Problems, 27 (2011), 125002, 17 pp. doi: 10.1088/0266-5611/27/12/125002.  Google Scholar

[20]

F. ZengP. Suarez and J. Sun, A decomposition method for an interior inverse scattering problem, Inverse Probl. and Imaging, 7 (2013), 291-303.  doi: 10.3934/ipi.2013.7.291.  Google Scholar

[21]

F. ZengX. LiuJ. Sun and L. Xu, The reciprocity gap method for a cavity in an inhomogeneous medium, Inverse Probl. Imaging, 10 (2016), 855-868.  doi: 10.3934/ipi.2016024.  Google Scholar

[22]

F. ZengX. LiuJ. Sun and L. Xu, Reciprocity gap method for an interior inverse scattering problem, J. Inverse Ill-Posed Probl., 25 (2017), 57-68.  doi: 10.1515/jiip-2015-0064.  Google Scholar

Figure 1.  Explicative figure. Relative location of the reference cavities $ B_z $ and $ D $
Figure 2.  Explicative figure. The reference cavities $ B_z $ marked with different sampling points $ z $ along different (left side) or same (right side) polar angle direction
Figure 3.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 4.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 5.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 6.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 7.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 8.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 9.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 10.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 11.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 12.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 13.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 14.  The contour plots of the indicator functions $ I_1(z) $ (left) and $ I_2(z) $ (right). Exact boundary $ \partial D $, measurement location $ C $ and point source $ x_0 $ are shown in red
Figure 15.  The contour plots of the indicator functions $ I_1(z) $. Exact boundaries $ \partial D $, measurement locations $ C $ and point sources $ x_0 $ are shown in red
[1]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[2]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[3]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[4]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[5]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[6]

Amin Boumenir, Vu Kim Tuan, Nguyen Hoang. The recovery of a parabolic equation from measurements at a single point. Evolution Equations & Control Theory, 2018, 7 (2) : 197-216. doi: 10.3934/eect.2018010

[7]

Masaru Ikehata. The enclosure method for inverse obstacle scattering using a single electromagnetic wave in time domain. Inverse Problems & Imaging, 2016, 10 (1) : 131-163. doi: 10.3934/ipi.2016.10.131

[8]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[9]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[10]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems & Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[11]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

[12]

Michael V. Klibanov, Dinh-Liem Nguyen, Loc H. Nguyen, Hui Liu. A globally convergent numerical method for a 3D coefficient inverse problem with a single measurement of multi-frequency data. Inverse Problems & Imaging, 2018, 12 (2) : 493-523. doi: 10.3934/ipi.2018021

[13]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[14]

Loc H. Nguyen, Qitong Li, Michael V. Klibanov. A convergent numerical method for a multi-frequency inverse source problem in inhomogenous media. Inverse Problems & Imaging, 2019, 13 (5) : 1067-1094. doi: 10.3934/ipi.2019048

[15]

Zhiming Chen, Shaofeng Fang, Guanghui Huang. A direct imaging method for the half-space inverse scattering problem with phaseless data. Inverse Problems & Imaging, 2017, 11 (5) : 901-916. doi: 10.3934/ipi.2017042

[16]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[17]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[18]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[19]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[20]

Behrouz Kheirfam, Guoqiang Wang. An infeasible full NT-step interior point method for circular optimization. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 171-184. doi: 10.3934/naco.2017011

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (42)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]