\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Saturation-Value Total Variation model for chromatic aberration correction

  • * Corresponding author: Ling Pi

    * Corresponding author: Ling Pi 
Wei Wang is supported by Natural Science Foundation of Shanghai and Fundamental Research Funds for the Central Universities of China (22120180255, 22120180067), Michael K. Ng is supported in part by the HKRGC GRF 12306616, 12200317, 12300218 and 12300519
Abstract / Introduction Full Text(HTML) Figure(11) / Table(3) Related Papers Cited by
  • Chromatic aberration generally occurs in the regions of sharp edges in captured digital color images. The main aim of this paper is to propose and develop a novel Saturation-Value Total Variation (SVTV) model for chromatic aberration correction. In the proposed optimization model, there are three terms for the correction purpose. The SVTV regularization term is to model the target color image in HSV color space instead of RGB color space, and to avoid oscillations in the recovering process. In correction process, the gradient matching terms based on the green component are used to govern both red and blue components, and the intensity terms are employed to fit red, green and blue data components. The existence of the minimizer of the optimization model is analyzed and an efficient optimization algorithm is also developed for solving the resulting variational problem. Experimental results are presented to illustrate the effectiveness of the proposed model and to show that the correction results are better than those by using the other testing methods.

    Mathematics Subject Classification: Primary: 65J22, 65K10, 68U10; Secondary: 65K15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  First row: The ground-truth image; Second row: the CA image; Third row: the CA correction image by using the local PDE method [9]; Forth row: the CA correction image by using the TV method [20] with $ \mu = 45 $; Fifth row: the CA corrected image by using the proposed method with $ \mu = 20 $. Note that the intensity values of red, green and blue colors are shown in line profile images

    Figure 2.  First row: The ground-truth image; Second row: the CA image; Third row: the CA correction image by using the local PDE method [9]; Forth row: the CA correction image by using the TV method $ \mu = 45 $ [20]; Fifth row: the CA corrected image by using the proposed method $ \mu = 20 $. Note that the intensity values of red, green and blue colors are shown in line profile images

    Figure 3.  First row: CA image, Ground-truth, zooming parts; First column (except first row): the restored results by using TV-CAC model with $ \mu = 5, 10, 15, 20, 25 $; Second column (except first row): the restored results by using SVTV-CAC model with $ \mu = 5, 10, 15, 20, 25 $; Third column (except first row): zooming parts of the restored results by using TV-CAC model; Forth column (except first row): zooming parts of the restored results by using SVTV-CAC model

    Figure 4.  Measure distribution

    Figure 5.  From left to right: ground-truth image, CA image, the restored results by using PDE model, the restored results by using TV-CAC model $ \mu = 1 $, the restored results by using SVTV-CAC model $ \mu = 20 $. Second row: the corresponding zooming parts. Third row: S-CIELAB color error distribution

    Figure 6.  From left to right: ground-truth image, CA image, the restored results by using PDE model, the restored results by using TV-CAC model $ \mu = 1 $, the restored results by using SVTV-CAC model $ \mu = 10 $. Second row: the corresponding zooming parts. Third row: S-CIELAB color error distribution

    Figure 7.  From left to right: ground-truth image, CA image, the restored results by using PDE model, the restored results by using TV-CAC model $ \mu = 5 $, the restored results by using SVTV-CAC model $ \mu = 15 $. Second row: the corresponding zooming parts. Third row: S-CIELAB color error distribution

    Figure 8.  From left to right: ground-truth image, CA image, the restored results by using PDE model, the restored results by using TV-CAC model $ \mu = 0.5 $, the restored results by using SVTV-CAC model $ \mu = 15 $. Second row: the corresponding zooming parts. Third row: S-CIELAB color error distribution

    Figure 9.  From left to right: ground-truth image, CA image, the restored results by using PDE model, the restored results by using TV-CAC model $ \mu = 1 $, the restored results by using SVTV-CAC model $ \mu = 20 $. Second row: the corresponding zooming parts. Third row: S-CIELAB color error distribution

    Figure 10.  First row: ground-truth image and CA image; Second row: the restored results by using GW and LC1 respectively; Third row: the restored results by using LC2, FCF and SVTV-CAC respectively

    Figure 11.  First row: original real world image and zooming part; Second row: the restored results by using GW and LC1 respectively; Third row: the restored results by using LC2, and FCF respectively; Fourth row: the restored result by using SVTV-CAC

    Table 1.  Measure values with respect to $ \mu $

    Figure method PSNR SSIM SCIELAB Error
    1 by TV-CAC $ \mu = 30 $ 26.8443 0.9745 76557
    $ \mu = 35 $ 27.5209 0.9763 69818
    $ \mu = 40 $ 28.3432 0.9784 60924
    $ \mu = 45 $ 28.8332 0.9796 55742
    $ \mu = 50 $ 28.6660 0.9793 56195
    $ \mu = 55 $ 27.9948 0.9778 58992
    1 by SVTV-CAC $ \mu = 10 $ 28.9121 0.9739 62781
    $ \mu = 15 $ 30.6855 0.9793 44484
    $ \mu = 20 $ 32.1152 0.9824 33414
    $ \mu = 25 $ 30.4036 0.9809 38666
    $ \mu = 30 $ 28.7030 0.9774 47549
    $ \mu = 35 $ 27.8225 0.9744 56347
    2 by TV-CAC $ \mu = 25 $ 26.3643 0.9764 132157
    $ \mu = 30 $ 26.4490 0.9764 129911
    $ \mu = 35 $ 26.5936 0.9766 125456
    $ \mu = 40 $ 26.7426 0.9765 120319
    $ \mu = 45 $ 26.8504 0.9761 115719
    $ \mu = 50 $ 26.8937 0.9750 111624
    $ \mu = 55 $ 26.8625 0.9735 108241
    $ \mu = 60 $ 26.7493 0.9712 104724
    $ \mu = 65 $ 26.5678 0.9685 102599
    2 by SVTV-CAC $ \mu = 10 $ 27.5949 0.9683 39666
    $ \mu = 15 $ 28.0019 0.9724 33962
    $ \mu = 20 $ 28.4454 0.9743 34005
    $ \mu = 25 $ 28.3332 0.9738 35153
    $ \mu = 30 $ 27.5742 0.9693 40700
    $ \mu = 35 $ 26.4950 0.9604 47721
     | Show Table
    DownLoad: CSV

    Table 2.  Measure values of different models

    Figure method PSNR SSIM SCIELAB Error
    5 PDE 21.0142 0.9076 52054
    TV 22.9057 0.9587 54186
    SVTV 26.1505 0.9644 32019
    6 PDE 27.2024 0.9531 24001
    TV 26.6299 0.9603 50560
    SVTV 27.8191 0.9611 21604
    7 PDE 25.5506 0.9533 29722
    TV 27.4673 0.9762 39483
    SVTV 28.2084 0.9776 18815
    8 PDE 24.9437 0.9389 27986
    TV 27.4506 0.9787 65008
    SVTV 30.0501 0.9835 9287
    9 PDE 35.9356 0.9864 6197
    TV 35.4925 0.9883 6444
    SVTV 36.3883 0.9892 4130
     | Show Table
    DownLoad: CSV

    Table 3.  Measure values of different models

    Figure method PSNR SSIM SCIELAB Error
    10 CM1 26.2709 0.8654 18085
    CM2 24.9585 0.8485 23807
    CM3 28.2337 0.8956 13936
    PM 26.3282 0.8559 15946
    SVTV 31.5037 0.9450 6768
     | Show Table
    DownLoad: CSV
  • [1] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Springer-Verlag, New York, 2002.
    [2] B. E. Bayer, Color Imaging Array, U.S. Patent No. 3971065, 1976.
    [3] T. E. Boult and G. Wolberg, Correcting chromatic aberrations using image warping, in Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1992,684–687.
    [4] J. ChangH. Kang and M. G. Kang, Correction of axial and lateral chromatic aberration with false color filtering, IEEE Trans. Image Process., 22 (2013), 1186-1198.  doi: 10.1109/TIP.2012.2228489.
    [5] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2 (1976), 17-40. 
    [6] N. A. IbraheemM. M. HasanR. Z. Khan and P. K. Mishra, Understanding color models: A review, ARPN Journal of Science and Technology, 2 (2012), 265-275. 
    [7] Z. JiaM. K. Ng and W. Wang, Color image restoration by saturation-value (SV) total variation, SIAM J. Imaging Sci., 12 (2019), 972-1000.  doi: 10.1137/18M1230451.
    [8] S. B. Kang, Automatic removal of chromatic aberration from a single image, in 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007, 1–8.
    [9] H. KangS.-H. LeeJ. Chang and M. G. Kang, Partial differential equation-based approach for removal of chromatic aberration with local characteristics, J. of Electronic Imaging, 19 (2010), 1-8. 
    [10] V. Kaufmann and R. Ladstädter, Elimination of color fringes in digital photographs caused by lateral chromatic aberration, in Proc. 20th Int. Comm. Int. Photogramm. Archit. Symp. Conf., Oct., 2005, 1–6.
    [11] H. K. Kelda and P. Kaur, A review: Color models in image processing, Int. J. Computer Technology and Applications, 5 (2014), 319-322. 
    [12] B. Kim and R. Park, Automatic detection and correction of purple fringing using the gradient information and desaturation, in Proc. 16th Eur. Signal Process. Conf., Oct., 2008, 1–5.
    [13] R. Kimmel, Demosaicing: Image reconstruction from color CCD samples, IEEE Trans. Image Process., 8 (1999), 1221-1228. 
    [14] H. Kour, Analysis on image color model, International Journal of Advanced Research in Computer and Communication Engineering, 4 (2015), 1-3. 
    [15] P. B. KrugerS. MathewsK. R. Aggarwala and N. Sanchez, Chromatic aberration and ocular focus: Fincham revisited, Vision Research, 33 (1993), 1397-1411.  doi: 10.1016/0042-6989(93)90046-Y.
    [16] J. Mallon and P. F. Whelan, Calibration and removal of lateral chromatic aberration in images, Pattern Recognition Letters, 28 (2007), 125-135.  doi: 10.1016/j.patrec.2006.06.013.
    [17] D. H. Marimont and B. A. Wandell, Matching color images: The effects of axial chromatic aberration, Journal of the Optical Society of America A, 11 (1994), 3113-3122.  doi: 10.1364/JOSAA.11.003113.
    [18] D. MartinC. FowlkesD. Tal and J. Malik, A Database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, Proceedings of IEEE International Conference on Computer Vision (ICCV) 2001, 2 (2001), 416-423.  doi: 10.1109/ICCV.2001.937655.
    [19] P. Mouroulis and  J. MacdonaldGeometrical Optics and Optical Design, 1$^{st}$ edition, Oxford U. Press, New York, 1997. 
    [20] L. PiW. Wang and M. Ng, A spatially variant total variational model for chromatic aberration correction, Journal of Visual Communication and Image Representation, 41 (2016), 296-304.  doi: 10.1016/j.jvcir.2016.10.009.
    [21] L. N. ThibosA. BradleyD. L. StillX. Zhang and P. A. Howarth, Theory and measurement of ocular chromatic aberration, Vision Research, 30 (1990), 33-49.  doi: 10.1016/0042-6989(90)90126-6.
    [22] R. G. Willson and S. A. Shafer, Active lens control for high precision computer imaging, IEEE International Conference on Robotics and Automation, 3 (1991), 2063-2070.  doi: 10.1109/ROBOT.1991.131931.
    [23] X. Zhang and B. A. Wandell, A spatial extension of CIELAB for digital color-image reproduction, Journal of the Society for Information Display, 5 (1997), 61-63.  doi: 10.1889/1.1985127.
  • 加载中

Figures(11)

Tables(3)

SHARE

Article Metrics

HTML views(1972) PDF downloads(314) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return