# American Institute of Mathematical Sciences

October  2020, 14(5): 757-782. doi: 10.3934/ipi.2020035

## Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements

 pr. Akademika Lavrentjeva 6, Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, 630090, Russia

* Corresponding author: Alexey Penenko

Received  May 2019 Revised  March 2020 Published  July 2020

Fund Project: The author is supported by RSF grant 17-71-10184 and State Program 0315-2019-0004

The inverse source problems for nonlinear advection-diffusion-reaction models with image-type measurement data are considered. The use of the sensitivity operators, constructed of the ensemble of adjoint problem solutions, allows transforming the inverse problems stated as the systems of nonlinear PDE to a family of operator equations depending on the given set of functions in the space of measurement results. The tangential cone conditions for the resulting operator equations are studied. Newton-Kantorovich type methods are applied for the solution of the operator equations. The algorithms are numerically evaluated on an inverse source problem of atmospheric chemistry.

Citation: Alexey Penenko. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements. Inverse Problems & Imaging, 2020, 14 (5) : 757-782. doi: 10.3934/ipi.2020035
##### References:

show all references

##### References:
Exact source of $NO$ a), $NO$ concentration field in the final time moment b), $O_{3}$ concentration field in the final time moment c)
The relative error a) and the relative misfit b) for the different numbers $\Xi$ of the projection functions
Exact source of $NO$ a), the projection of the initial guess error $\mathbf{\bar{r} }^{(\ast)}-\mathbf{\bar{r}}^{(0)}$ to the orthogonal complement of $Ker\mathbf{m_{\bar{U}}[\mathbf{\bar{r}}^{(\ast)}, \mathbf{\bar{r}}^{(\ast)}]}$ b), source identification result c)
The relative error a) and the relative misfit b) for direct measurements, when the emitted substance concentration measurements are available ($L_{src} = L_{meas} = \left\{ NO\right\}$) and indirect measurements, when other substance concentration measurements are available ($L_{src} = \left\{ NO\right\}$, $L_{meas} = \left\{ O_{3}\right\}$)
The relative error a) and the relative misfit b) for Levenberg-Marquardt-type Algorithm 1 with $\Theta = \Theta_{LM}$ (LM) and truncated SVD-based Algorithm 1 with $\Theta = \Theta_{TSVD}$ (SVD)
The relative error a) and the relative misfit b) with different noise levels $\delta$
Relative errors on the final iteration with different noise levels $\delta$
The relative measurement error levels $J_{m}(\delta)$ for different $\delta$
 $\delta$ 0 0.005 0.01 0.02 0.05 0.1 $J_{m}(\delta)$ 0 0.0028 0.0057 0.011 0.028 0.057
 $\delta$ 0 0.005 0.01 0.02 0.05 0.1 $J_{m}(\delta)$ 0 0.0028 0.0057 0.011 0.028 0.057
 [1] Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719 [2] Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509 [3] Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032 [4] Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 [5] Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709 [6] Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989 [7] Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841 [8] Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266 [9] Yuxuan Gong, Xiang Xu. Inverse random source problem for biharmonic equation in two dimensions. Inverse Problems & Imaging, 2019, 13 (3) : 635-652. doi: 10.3934/ipi.2019029 [10] Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 [11] Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114 [12] Assyr Abdulle. Multiscale methods for advection-diffusion problems. Conference Publications, 2005, 2005 (Special) : 11-21. doi: 10.3934/proc.2005.2005.11 [13] Lauri Oksanen. Solving an inverse problem for the wave equation by using a minimization algorithm and time-reversed measurements. Inverse Problems & Imaging, 2011, 5 (3) : 731-744. doi: 10.3934/ipi.2011.5.731 [14] Martin Hanke, William Rundell. On rational approximation methods for inverse source problems. Inverse Problems & Imaging, 2011, 5 (1) : 185-202. doi: 10.3934/ipi.2011.5.185 [15] Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks & Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369 [16] Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020217 [17] Danhua Jiang, Zhi-Cheng Wang, Liang Zhang. A reaction-diffusion-advection SIS epidemic model in a spatially-temporally heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4557-4578. doi: 10.3934/dcdsb.2018176 [18] Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465 [19] Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convection-diffusion equation. Inverse Problems & Imaging, 2020, 14 (1) : 53-75. doi: 10.3934/ipi.2019063 [20] Jaan Janno, Kairi Kasemets. Uniqueness for an inverse problem for a semilinear time-fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (1) : 125-149. doi: 10.3934/ipi.2017007

2019 Impact Factor: 1.373

## Tools

Article outline

Figures and Tables