# American Institute of Mathematical Sciences

• Previous Article
Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements
• IPI Home
• This Issue
• Next Article
Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation
October  2020, 14(5): 819-839. doi: 10.3934/ipi.2020038

## Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation

 1 Aix-Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France 2 Department of Mathematics, University College London, London, UK

Y. Kian was partially supported by the Agence Nationale de la Recherche under grant ANR-17-CE40-0029.

Received  November 2019 Revised  March 2020 Published  July 2020

Fund Project: A. Tetlow was supported by EPSRC DTP studentship EP/N509577/1

We consider the inverse problem of Hölder-stably determining the time- and space-dependent coefficients of the Schrödinger equation on a simple Riemannian manifold with boundary of dimension $n\geq2$ from the knowledge of the Dirichlet-to-Neumann map. Assuming the divergence of the magnetic potential is known, we show that the electric and magnetic potentials can be Hölder-stably recovered from these data. Here we also remove the smallness assumption for the solenoidal part of the magnetic potential present in previous results.

Citation: Yavar Kian, Alexander Tetlow. Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation. Inverse Problems & Imaging, 2020, 14 (5) : 819-839. doi: 10.3934/ipi.2020038
##### References:

show all references

##### References:
 [1] Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705 [2] Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems & Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039 [3] Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639 [4] Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 [5] Alexander Zlotnik. The Numerov-Crank-Nicolson scheme on a non-uniform mesh for the time-dependent Schrödinger equation on the half-axis. Kinetic & Related Models, 2015, 8 (3) : 587-613. doi: 10.3934/krm.2015.8.587 [6] P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253 [7] Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 [8] Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315 [9] Francesco Di Plinio, Gregory S. Duane, Roger Temam. Time-dependent attractor for the Oscillon equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 141-167. doi: 10.3934/dcds.2011.29.141 [10] Jin Takahashi, Eiji Yanagida. Time-dependent singularities in the heat equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 969-979. doi: 10.3934/cpaa.2015.14.969 [11] Mourad Choulli, Yavar Kian. Stability of the determination of a time-dependent coefficient in parabolic equations. Mathematical Control & Related Fields, 2013, 3 (2) : 143-160. doi: 10.3934/mcrf.2013.3.143 [12] Guanghui Hu, Yavar Kian. Uniqueness and stability for the recovery of a time-dependent source in elastodynamics. Inverse Problems & Imaging, 2020, 14 (3) : 463-487. doi: 10.3934/ipi.2020022 [13] Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Problems & Imaging, 2017, 11 (5) : 875-900. doi: 10.3934/ipi.2017041 [14] Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307 [15] Jungkwon Kim, Hyeongjin Lee, Ihyeok Seo, Jihyeon Seok. On Morawetz estimates with time-dependent weights for the Klein-Gordon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6275-6288. doi: 10.3934/dcds.2020279 [16] Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Robustness of time-dependent attractors in H1-norm for nonlocal problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1011-1036. doi: 10.3934/dcdsb.2018140 [17] Jeongmin Han. Local Lipschitz regularity for functions satisfying a time-dependent dynamic programming principle. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2617-2640. doi: 10.3934/cpaa.2020114 [18] Eugen Mihailescu. Approximations for Gibbs states of arbitrary Hölder potentials on hyperbolic folded sets. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 961-975. doi: 10.3934/dcds.2012.32.961 [19] Xuan Liu, Ting Zhang. $H^2$ blowup result for a Schrödinger equation with nonlinear source term. Electronic Research Archive, 2020, 28 (2) : 777-794. doi: 10.3934/era.2020039 [20] Jordi-Lluís Figueras, Thomas Ohlson Timoudas. Sharp $\frac12$-Hölder continuity of the Lyapunov exponent at the bottom of the spectrum for a class of Schrödinger cocycles. Discrete & Continuous Dynamical Systems - A, 2020, 40 (7) : 4519-4531. doi: 10.3934/dcds.2020189