• Previous Article
    A nonconvex truncated regularization and box-constrained model for CT reconstruction
  • IPI Home
  • This Issue
  • Next Article
    Hölder-stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation
October  2020, 14(5): 841-865. doi: 10.3934/ipi.2020039

Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements

University of Tunis El Manar, National Engineering School of Tunis, ENIT-LAMSIN, B.P. 37, 1002 Tunis, Tunisia

* Corresponding author: Mourad Bellassoued

Received  December 2019 Revised  March 2020 Published  July 2020

Fund Project: The authors are supported by the Tunisian Research Program PHC-UTIQUE 19G-1507

In this work, we study the stable determination of time-dependent coefficients appearing in the Schrödinger equation from partial Dirichlet-to-Neumann map measured on an arbitrary part of the boundary. Specifically, we establish stability estimates up to the natural gauge for the magnetic potential.

Citation: Mourad Bellassoued, Oumaima Ben Fraj. Stability estimates for time-dependent coefficients appearing in the magnetic Schrödinger equation from arbitrary boundary measurements. Inverse Problems & Imaging, 2020, 14 (5) : 841-865. doi: 10.3934/ipi.2020039
References:
[1]

I. B. Aïcha, Stability estimate for hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 125010. doi: 10.1088/0266-5611/31/12/125010.  Google Scholar

[2]

I. B. Aïcha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, Journal of Mathematical Physics, 58 (2017), 071508. doi: 10.1063/1.4995606.  Google Scholar

[3]

I. B. Aïcha and Y. Mejri, Simultaneous determination of the magnetic field and the electric potential in the Schrödinger equation by a finite number of boundary observations, Journal of Inverse and Ill-posed Problems, 26 (2018), 201-209.  doi: 10.1515/jiip-2017-0028.  Google Scholar

[4]

M. Bellassoued, Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field, Inverse Problems, 33 (2017), 055009., doi: 10.1088/1361-6420/aa5fc5.  Google Scholar

[5]

M. Bellassoued and M. Choulli, Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation, Journal de Mathématiques Pures et Appliquées, 91 (2009), 233-255.  doi: 10.1016/j.matpur.2008.06.002.  Google Scholar

[6]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.  doi: 10.1016/j.jfa.2009.06.010.  Google Scholar

[7]

M. Bellassoued and D. D. S. Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 125010. doi: 10.1088/0266-5611/26/12/125010.  Google Scholar

[8]

M. BellassouedY. Kian and E. Soccorsi, An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation, J. Differential Equations, 260 (2016), 7535-7562.  doi: 10.1016/j.jde.2016.01.033.  Google Scholar

[9]

M. BellassouedY. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publications of the Research Institute for Mathematical Sciences, 54 (2018), 679-728.  doi: 10.4171/PRIMS/54-4-1.  Google Scholar

[10]

M. Bellassoued and I. Rassas, Stability estimate in the determination of a time-dependent coefficient for hyperbolic equation by partial Dirichlet-to-Neumann map, Applicable Analysis, 98 (2019), 2751-2782.  doi: 10.1080/00036811.2018.1471206.  Google Scholar

[11]

H. Brezis, Analyse Foncionnelle. Théorie et Applications, Collection mathématiques appliquées pour la maitrise, Masson, Paris, 1993.  Google Scholar

[12]

M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Mathematical Control and Related Fields, 3 (2013), 143-160.  doi: 10.3934/mcrf.2013.3.143.  Google Scholar

[13]

M. Choulli and Y. Kian, Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map, Journal de Mathématiques Pures et Appliquées, 114 (2018), 235–261. doi: 10.1016/j.matpur.2017.12.003.  Google Scholar

[14]

M. ChoulliY. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.  doi: 10.1137/140986268.  Google Scholar

[15]

F. Chung, A partial data result for the magnetic Schrödinger inverse problem, Analysis & PDE, 7 (2014), 117-157.  doi: 10.2140/apde.2014.7.117.  Google Scholar

[16]

M. Cristofol and E. Soccorsi, Stability estimate in an inverse problem for non-autonomous magnetic Schrödinger equations, Applicable Analysis, 90 (2011), 1499-1520.  doi: 10.1080/00036811.2010.524161.  Google Scholar

[17]

D. D. S. FerreiraJ. SjöstrandC. E. Kenig and G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), 467-488.  doi: 10.1007/s00220-006-0151-9.  Google Scholar

[18]

G. Eskin, Inverse boundary value problems and the Aharonov-Bohm effect, Inverse Problems, 19 (2002), 49-62.  doi: 10.1088/0266-5611/19/1/303.  Google Scholar

[19]

G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles, Inverse Problems, 19 (2003), 985-998.  doi: 10.1088/0266-5611/19/4/313.  Google Scholar

[20]

G. Eskin, Inverse boundary value problems in domains with several obstacles, Inverse Problems, 20 (2004), 1497-1516.  doi: 10.1088/0266-5611/20/5/011.  Google Scholar

[21]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737-1758.  doi: 10.1080/03605300701382340.  Google Scholar

[22]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 022105. doi: 10.1063/1.2841329.  Google Scholar

[23]

G. Eskin and J. Ralston, Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy, Comm. Math. Phys., 173 (1995), 199-224.  doi: 10.1007/BF02100187.  Google Scholar

[24]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by Carleman estimate, Inverse Problems, 14 (1998), 1229-1249.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[25]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse problems, 8 (1992), 193-206.  doi: 10.1088/0266-5611/8/2/003.  Google Scholar

[26]

Y. Kian, A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data, Journal of Spectral Theory, 8 (2018), 235-269.  doi: 10.4171/JST/195.  Google Scholar

[27]

Y. Kian, Stability in the determination of a time-dependent coefficient for wave equations from partial data, J. Math. Anal. Appl., 436 (2016), 408-428.  doi: 10.1016/j.jmaa.2015.12.018.  Google Scholar

[28]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021-4046.  doi: 10.1137/16M1076708.  Google Scholar

[29]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.  Google Scholar

[30]

Y. Kian and A. Tetlow, Hölder stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation, preprint, arXiv: 1901.09728. Google Scholar

[31]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015. doi: 10.1088/0266-5611/29/9/095015.  Google Scholar

[32]

B. Schweizer, On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma, in Trends in Applications of Mathematics to Mechanics, Springer INdAM Ser., 27, Springer, Cham, 2018, 65–79. doi: 10.1007/978-3-319-75940-1_4.  Google Scholar

[33]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154 (1998), 330-358.  doi: 10.1006/jfan.1997.3188.  Google Scholar

[34]

L. Tzou, Stability estimates for coefficients of magnetic Schrödinger equation from full and partial boundary measurements, Comm. Partial Differential Equations, 3 (2008), 1911-1952.  doi: 10.1080/03605300802402674.  Google Scholar

show all references

References:
[1]

I. B. Aïcha, Stability estimate for hyperbolic inverse problem with time-dependent coefficient, Inverse Problems, 31 (2015), 125010. doi: 10.1088/0266-5611/31/12/125010.  Google Scholar

[2]

I. B. Aïcha, Stability estimate for an inverse problem for the Schrödinger equation in a magnetic field with time-dependent coefficient, Journal of Mathematical Physics, 58 (2017), 071508. doi: 10.1063/1.4995606.  Google Scholar

[3]

I. B. Aïcha and Y. Mejri, Simultaneous determination of the magnetic field and the electric potential in the Schrödinger equation by a finite number of boundary observations, Journal of Inverse and Ill-posed Problems, 26 (2018), 201-209.  doi: 10.1515/jiip-2017-0028.  Google Scholar

[4]

M. Bellassoued, Stable determination of coefficients in the dynamical Schrödinger equation in a magnetic field, Inverse Problems, 33 (2017), 055009., doi: 10.1088/1361-6420/aa5fc5.  Google Scholar

[5]

M. Bellassoued and M. Choulli, Logarithmic stability in the dynamical inverse problem for the Schrödinger equation by arbitrary boundary observation, Journal de Mathématiques Pures et Appliquées, 91 (2009), 233-255.  doi: 10.1016/j.matpur.2008.06.002.  Google Scholar

[6]

M. Bellassoued and M. Choulli, Stability estimate for an inverse problem for the magnetic Schrödinger equation from the Dirichlet-to-Neumann map, J. Funct. Anal., 258 (2010), 161-195.  doi: 10.1016/j.jfa.2009.06.010.  Google Scholar

[7]

M. Bellassoued and D. D. S. Ferreira, Stable determination of coefficients in the dynamical anisotropic Schrödinger equation from the Dirichlet-to-Neumann map, Inverse Problems, 26 (2010), 125010. doi: 10.1088/0266-5611/26/12/125010.  Google Scholar

[8]

M. BellassouedY. Kian and E. Soccorsi, An inverse stability result for non compactly supported potentials by one arbitrary lateral Neumann observation, J. Differential Equations, 260 (2016), 7535-7562.  doi: 10.1016/j.jde.2016.01.033.  Google Scholar

[9]

M. BellassouedY. Kian and E. Soccorsi, An inverse problem for the magnetic Schrödinger equation in infinite cylindrical domains, Publications of the Research Institute for Mathematical Sciences, 54 (2018), 679-728.  doi: 10.4171/PRIMS/54-4-1.  Google Scholar

[10]

M. Bellassoued and I. Rassas, Stability estimate in the determination of a time-dependent coefficient for hyperbolic equation by partial Dirichlet-to-Neumann map, Applicable Analysis, 98 (2019), 2751-2782.  doi: 10.1080/00036811.2018.1471206.  Google Scholar

[11]

H. Brezis, Analyse Foncionnelle. Théorie et Applications, Collection mathématiques appliquées pour la maitrise, Masson, Paris, 1993.  Google Scholar

[12]

M. Choulli and Y. Kian, Stability of the determination of a time-dependent coefficient in parabolic equations, Mathematical Control and Related Fields, 3 (2013), 143-160.  doi: 10.3934/mcrf.2013.3.143.  Google Scholar

[13]

M. Choulli and Y. Kian, Logarithmic stability in determining the time-dependent zero order coefficient in a parabolic equation from a partial Dirichlet-to-Neumann map, Journal de Mathématiques Pures et Appliquées, 114 (2018), 235–261. doi: 10.1016/j.matpur.2017.12.003.  Google Scholar

[14]

M. ChoulliY. Kian and E. Soccorsi, Stable determination of time-dependent scalar potential from boundary measurements in a periodic quantum waveguide, SIAM J. Math. Anal., 47 (2015), 4536-4558.  doi: 10.1137/140986268.  Google Scholar

[15]

F. Chung, A partial data result for the magnetic Schrödinger inverse problem, Analysis & PDE, 7 (2014), 117-157.  doi: 10.2140/apde.2014.7.117.  Google Scholar

[16]

M. Cristofol and E. Soccorsi, Stability estimate in an inverse problem for non-autonomous magnetic Schrödinger equations, Applicable Analysis, 90 (2011), 1499-1520.  doi: 10.1080/00036811.2010.524161.  Google Scholar

[17]

D. D. S. FerreiraJ. SjöstrandC. E. Kenig and G. Uhlmann, Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), 467-488.  doi: 10.1007/s00220-006-0151-9.  Google Scholar

[18]

G. Eskin, Inverse boundary value problems and the Aharonov-Bohm effect, Inverse Problems, 19 (2002), 49-62.  doi: 10.1088/0266-5611/19/1/303.  Google Scholar

[19]

G. Eskin, Inverse problems for the Schrödinger operators with electromagnetic potentials in domains with obstacles, Inverse Problems, 19 (2003), 985-998.  doi: 10.1088/0266-5611/19/4/313.  Google Scholar

[20]

G. Eskin, Inverse boundary value problems in domains with several obstacles, Inverse Problems, 20 (2004), 1497-1516.  doi: 10.1088/0266-5611/20/5/011.  Google Scholar

[21]

G. Eskin, Inverse hyperbolic problems with time-dependent coefficients, Comm. Partial Differential Equations, 32 (2007), 1737-1758.  doi: 10.1080/03605300701382340.  Google Scholar

[22]

G. Eskin, Inverse problems for the Schrödinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect, J. Math. Phys., 49 (2008), 022105. doi: 10.1063/1.2841329.  Google Scholar

[23]

G. Eskin and J. Ralston, Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy, Comm. Math. Phys., 173 (1995), 199-224.  doi: 10.1007/BF02100187.  Google Scholar

[24]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by Carleman estimate, Inverse Problems, 14 (1998), 1229-1249.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[25]

V. Isakov and Z. Sun, Stability estimates for hyperbolic inverse problems with local boundary data, Inverse problems, 8 (1992), 193-206.  doi: 10.1088/0266-5611/8/2/003.  Google Scholar

[26]

Y. Kian, A multidimensional Borg-Levinson theorem for magnetic Schrödinger operators with partial spectral data, Journal of Spectral Theory, 8 (2018), 235-269.  doi: 10.4171/JST/195.  Google Scholar

[27]

Y. Kian, Stability in the determination of a time-dependent coefficient for wave equations from partial data, J. Math. Anal. Appl., 436 (2016), 408-428.  doi: 10.1016/j.jmaa.2015.12.018.  Google Scholar

[28]

Y. Kian, Recovery of time-dependent damping coefficients and potentials appearing in wave equations from partial data, SIAM J. Math. Anal., 48 (2016), 4021-4046.  doi: 10.1137/16M1076708.  Google Scholar

[29]

Y. Kian and E. Soccorsi, Hölder stably determining the time-dependent electromagnetic potential of the Schrödinger equation, SIAM J. Math. Anal., 51 (2019), 627-647.  doi: 10.1137/18M1197308.  Google Scholar

[30]

Y. Kian and A. Tetlow, Hölder stable recovery of time-dependent electromagnetic potentials appearing in a dynamical anisotropic Schrödinger equation, preprint, arXiv: 1901.09728. Google Scholar

[31]

R. Salazar, Determination of time-dependent coefficients for a hyperbolic inverse problem, Inverse Problems, 29 (2013), 095015. doi: 10.1088/0266-5611/29/9/095015.  Google Scholar

[32]

B. Schweizer, On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma, in Trends in Applications of Mathematics to Mechanics, Springer INdAM Ser., 27, Springer, Cham, 2018, 65–79. doi: 10.1007/978-3-319-75940-1_4.  Google Scholar

[33]

P. Stefanov and G. Uhlmann, Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media, J. Funct. Anal., 154 (1998), 330-358.  doi: 10.1006/jfan.1997.3188.  Google Scholar

[34]

L. Tzou, Stability estimates for coefficients of magnetic Schrödinger equation from full and partial boundary measurements, Comm. Partial Differential Equations, 3 (2008), 1911-1952.  doi: 10.1080/03605300802402674.  Google Scholar

[1]

Victor Isakov, Jenn-Nan Wang. Increasing stability for determining the potential in the Schrödinger equation with attenuation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2014, 8 (4) : 1139-1150. doi: 10.3934/ipi.2014.8.1139

[2]

Jussi Behrndt, A. F. M. ter Elst. The Dirichlet-to-Neumann map for Schrödinger operators with complex potentials. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 661-671. doi: 10.3934/dcdss.2017033

[3]

Mourad Bellassoued, David Dos Santos Ferreira. Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Problems & Imaging, 2011, 5 (4) : 745-773. doi: 10.3934/ipi.2011.5.745

[4]

Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability for determination of Riemannian metrics by spectral data and Dirichlet-to-Neumann map limited on arbitrary subboundary. Inverse Problems & Imaging, 2019, 13 (6) : 1213-1258. doi: 10.3934/ipi.2019054

[5]

Francis J. Chung. Partial data for the Neumann-Dirichlet magnetic Schrödinger inverse problem. Inverse Problems & Imaging, 2014, 8 (4) : 959-989. doi: 10.3934/ipi.2014.8.959

[6]

Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631

[7]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[8]

Leyter Potenciano-Machado, Alberto Ruiz. Stability estimates for a magnetic Schrödinger operator with partial data. Inverse Problems & Imaging, 2018, 12 (6) : 1309-1342. doi: 10.3934/ipi.2018055

[9]

Mahamadi Warma. A fractional Dirichlet-to-Neumann operator on bounded Lipschitz domains. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2043-2067. doi: 10.3934/cpaa.2015.14.2043

[10]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[11]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[12]

Kevin Arfi, Anna Rozanova-Pierrat. Dirichlet-to-Neumann or Poincaré-Steklov operator on fractals described by d-sets. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 1-26. doi: 10.3934/dcdss.2019001

[13]

Ihsane Bikri, Ronald B. Guenther, Enrique A. Thomann. The Dirichlet to Neumann map - An application to the Stokes problem in half space. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 221-230. doi: 10.3934/dcdss.2010.3.221

[14]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[15]

Sombuddha Bhattacharyya. An inverse problem for the magnetic Schrödinger operator on Riemannian manifolds from partial boundary data. Inverse Problems & Imaging, 2018, 12 (3) : 801-830. doi: 10.3934/ipi.2018034

[16]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[17]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[18]

César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067

[19]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020095

[20]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (52)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]