[1]
|
A. H. Andersen and A. C. Kak, Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm, Ultrasonic Imaging, 6 (1984), 81-94.
|
[2]
|
C. Bao, B. Dong, L. Hou, Z. Shen, X. Zhang and X. Zhang, Image restoration by minimizing zero norm of wavelet frame coefficients, Inverse Problems, 32 (2016), 115-142.
doi: 10.1088/0266-5611/32/11/115004.
|
[3]
|
M. Bhatia, W. C. Karl and A. S. Willsky, A wavelet-based method for multiscale tomographic reconstruction, IEEE Transactions on Medical Imaging, 15 (1996), 92-101.
doi: 10.21236/ADA459987.
|
[4]
|
E. G. Birgin, J. M. Martínez and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM Journal on Optimization, 10 (2000), 1196-1211.
doi: 10.1137/S1052623497330963.
|
[5]
|
D. J. Brenner and E. J. Hall, Computed Tomography–an increasing source of radiation exposure, New England Journal of Medicine, 357 (2007), 2277-2284.
doi: 10.1056/NEJMra072149.
|
[6]
|
A. Cai, L. Wang, B. Yan, L. Li, H. Zhang and G. Hu, Efficient TpV minimization for circular, cone-beam computed tomography reconstruction via non-convex optimization, Computerized Medical Imaging and Graphics, 45 (2015), 1-10.
doi: 10.1016/j.compmedimag.2015.06.004.
|
[7]
|
R. H. Chan, M. Tao and X. Yuan, Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers, SIAM Journal on Imaging Sciences, 6 (2013), 680-697.
doi: 10.1137/110860185.
|
[8]
|
X. Chen, Smoothing methods for nonsmooth, nonconvex minimization, Mathematical Programming, 134 (2012), 71-99.
doi: 10.1007/s10107-012-0569-0.
|
[9]
|
X. Chen, M. K. Ng and C. Zhang, Non-Lipschitz $\ell_{p}$-Regularization and Box Constrained Model for Image Restoration, IEEE Transactions on Image Processing, 21 (2012), 4709-4721.
doi: 10.1109/TIP.2012.2214051.
|
[10]
|
X. Chen, F. Xu and Y. Ye, Lower bound theory of nonzero entries in solutions of $\ell_{2}$-$\ell_{p}$ minimization, SIAM Journal on Scientific Computing, 32 (2010), 2832-2852.
doi: 10.1137/090761471.
|
[11]
|
Z. Chen, X. Jin, L. Li and G. Wang, A limited-angle CT reconstruction method based on anisotropic TV minimization, Physics in Medicine and Biology, 58 (2013), 2119-2141.
doi: 10.1088/0031-9155/58/7/2119.
|
[12]
|
J. K. Choi, B. Dong and X. Zhang, Limited tomography reconstruction via tight frame and simultaneous sinogram extrapolation, J. Comput. Math., 34 (2016), 575-589.
doi: 10.4208/jcm.1605-m2016-0535.
|
[13]
|
B. Dong, J. Li and Z. Shen, X-Ray CT image reconstruction via wavelet frame based regularization and radon domain inpainting, J. Sci. Comput., 54 (2013), 333-349.
doi: 10.1007/s10915-012-9579-6.
|
[14]
|
G. Edgar and T. H. Herman, X-Ray CT image reconstruction via wavelet frame based regularization and radon domain inpainting, Inverse Problems, 33 (2017), 185-208.
|
[15]
|
A. J. Einstein, M. J. Henzlova and R. Sanjay, Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography, Journal of American Medical Association, 298 (2007), 317-323.
doi: 10.1001/jama.298.3.317.
|
[16]
|
E. Y. Sidky, R. Chartrand, J. M. Boone and X. Pan, Constrained TpV minimization for enhanced exploitation of gradient sparsity: Application to CT image reconstruction, IEEE Journal of Translational Engineering in Health and Medicine, 2 (2014), 1-18.
|
[17]
|
H. Gao, R. Li, Y. Lin and L. Xing, 4D cone beam CT via spatiotemporal tensor framelet, Medical Physics, 39 (2012), 6943-6946.
doi: 10.1118/1.4762288.
|
[18]
|
Y. Gao and C. Wu, On a general smoothly truncated regularization for variational piecewise constant image restoration: Construction and convergent algorithms, Inverse Problems, 36 (2020), 1-31.
doi: 10.1088/1361-6420/ab6619.
|
[19]
|
R. Gordon, R. Bender and G. T. Herman, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography, Journal of Theoretical Biology, 29 (1970), 471-476.
doi: 10.1016/0022-5193(70)90109-8.
|
[20]
|
M. Hintermüller and T. Wu, Nonconvex $TV^{q}$-models in image restoration: Analysis and a trust-region regularization based superlinearly convergent solver, SIAM Journal on Imaging Sciences, 6 (2013), 1385-1415.
doi: 10.1137/110854746.
|
[21]
|
X. Jia, B. Dong, Y. Lou and S. B. Jiang, GPU-based iterative cone-beam CT reconstruction using tight frame regularization, Physics in Medicine and Biology, 56 (2011), 3787-3801.
doi: 10.1088/0031-9155/56/13/004.
|
[22]
|
X. Jia, Y. Lou, R. Li, W. Y. William and S. B. Jiang, GPU-based fast cone beam CT reconstruction from undersampled and noisy projection data via total variation, Medical Physics, 37 (2010), 1757-1760.
doi: 10.1118/1.3371691.
|
[23]
|
M. Jiang and G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART), IEEE Transactions on Image Processing, 12 (2003), 957-961.
doi: 10.1109/TIP.2003.815295.
|
[24]
|
H. Kim, J. Chen, A. Wang, C. Chuang, M. Held and J. Pouliot, Non-local total-variation (NLTV) minimization combined with reweighted L1-norm for compressed sensing CT reconstruction, Physics in Medicine and Biology, 61 (2016), 6878-6891.
doi: 10.1088/0031-9155/61/18/6878.
|
[25]
|
J. K. Kim, J. A. Fessler and Z. Zhang, Forward-projection architecture for fast iterative image reconstruction in X-ray CT, IEEE Transactions on Signal Processing, 60 (2012), 5508-5518.
doi: 10.1109/TSP.2012.2208636.
|
[26]
|
J. W. Kress, L. A. Feldkamp and L. C. Davis, Practical cone-beam algorithm, Journal of the Optical Society of American, 1 (1984), 612-619.
|
[27]
|
M. Lai, Y. Xu and W. Yin, Improved iteratively reweighted least squares for unconstrained smoothed $\ell_{q}$ minimization, SIAM Journal on Numerical Analysis, 51 (2013), 927-957.
doi: 10.1137/110840364.
|
[28]
|
Y. Liu, Z. Liang, J. Ma, H. Lu, K. Wang, H. Zhang and W. Moore, Total variation-stokes strategy for sparse-view X-ray CT image reconstruction, IEEE Transactions on Medical Imaging, 33 (2014), 749-763.
|
[29]
|
Y. Liu, J. Ma, Y. Fan and Z. Liang, Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction, Physics in Medicine and Biology, 57 (2012), 7923-7956.
doi: 10.1088/0031-9155/57/23/7923.
|
[30]
|
M. Nikolova, Analysis of the Recovery of Edges in Images and Signals by Minimizing Nonconvex Regularized Least-Squares, SIAM Journal on Multiscale Modeling and Simulation, 4 (2005), 960-991.
doi: 10.1137/040619582.
|
[31]
|
M. Nikolova, M. K. Ng and C. P. Tam, Fast Nonconvex Nonsmooth Minimization Methods for Image Restoration and Reconstruction, IEEE Transactions on image processing, 19 (2010), 3073-3088.
doi: 10.1109/TIP.2010.2052275.
|
[32]
|
M. Nikolova, M. K. Ng, S. Zhang and W. K. Ching, Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization, SIAM Journal on Imaging Sciences, 1 (2008), 2-25.
doi: 10.1137/070692285.
|
[33]
|
S. Niu, J. Huang, Z. Bian, D. Zeng, W. Chen, G. Yu, Z. Liang and J. Ma, Iterative reconstruction for sparse-view x-ray CT using alpha-divergence constrained total generalized variation minimization, Journal of X-ray Science and Technology, 25 (2017), 673-688.
doi: 10.3233/XST-16239.
|
[34]
|
S. Ramani and J. A. Fessler, A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction, IEEE Transactions on Medical Imaging, 31 (2012), 677-688.
doi: 10.1109/TMI.2011.2175233.
|
[35]
|
M. Rantala, S. Vanska, S. Jarvenpaa, M. Kalke, M. Lassas, J. Moberg and S. Siltanen, Wavelet-based reconstruction for limited-angle X-ray tomography, IEEE Transactions on Medical Imaging, 25 (2006), 210-217.
doi: 10.1109/TMI.2005.862206.
|
[36]
|
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[37]
|
W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey and B. M. Tsui, Realistic CT simulation using the 4D XCAT phantom, Medical Physics, 35 (2008), 3800-3808.
doi: 10.1118/1.2955743.
|
[38]
|
E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam CT by constrained, total-variation minimization, Physics in Medicine and Biology, 153 (2008), 4777-4807.
|
[39]
|
J. Wang, T. Li and L. Xing, Iterative image reconstruction for CBCT using edge-preserving prior, Medical Physics, 36 (2009), 252-260.
doi: 10.1118/1.3036112.
|
[40]
|
W. Wang, C. Wu and X. Tai, A globally convergent algorithm for a constrained non-Lipschitz image restoration model, Journal of Scientific Computing, (2020).
doi: 10.1007/s10915-020-01190-4.
|
[41]
|
Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Transactions on Image Processing, 13 (2004), 600-612.
doi: 10.1109/TIP.2003.819861.
|
[42]
|
C. Wu, Z. Liu and S. Wen, A general truncated regularization framework for contrast-preserving variational signal and image restoration: Motivation and implementation, Science China Mathematics, 61 (2018), 1711-1732.
doi: 10.1007/s11425-017-9260-8.
|
[43]
|
C. Wu and X. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3 (2010), 300-339.
doi: 10.1137/090767558.
|
[44]
|
Q. Xu, H. Yu, X. Mou, L. Zhang, H. Jiang and G. Wang, Low-dose X-ray CT reconstruction via dictionary learning, IEEE Transactions on Medical Imaging, 31 (2012), 1682-1697.
|
[45]
|
Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM Journal on Imaging Sciences, 6 (2013), 1758-1789.
doi: 10.1137/120887795.
|
[46]
|
C. Zeng, R. Jia and C. Wu, An iterative support shrinking algorithm for non-Lipschitz optimization in image restoration, Journal of Mathematical Imaging and Vision, 61 (2018), 122-139.
doi: 10.1007/s10851-018-0830-0.
|
[47]
|
C. Zeng and C. Wu, On the discontinuity of images recovered by noncovex nonsmooth regularized isotropic models with box constraints, Advances in Computational Mathematics, 45 (2018), 589-610.
doi: 10.1007/s10444-018-9629-1.
|
[48]
|
C. Zeng and C. Wu, On the edge recovery property of noncovex nonsmooth regularization in image restoration, SIAM Journal Numerical Analysis, 56 (2018), 1168-1182.
doi: 10.1137/17M1123687.
|
[49]
|
R. Zhan and B. Dong, CT image reconstruction by spatial-radon domain data-driven tight frame regularization, SIAM Journal on Imaging Sciences, 9 (2016), 1063-1083.
doi: 10.1137/16M105928X.
|
[50]
|
X. Zhang, M. Bai and M. K. Ng, Nonconvex-TV based image restoration with impulse noise removal, SIAM Journal on Imaging Sciences, 10 (2017), 1627-1667.
doi: 10.1137/16M1076034.
|
[51]
|
Y. Zhang, B. Dong and Z. Lu, An efficient algorithm for $\ell_{0}$ minimization in wavelet frame based image restoration, Mathematics of Computation, 82 (2013), 995-1015.
doi: 10.1090/S0025-5718-2012-02631-7.
|
[52]
|
W. Zhou, J. Cai and H. Gao, Adaptive tight frame based medical image reconstruction: A proof-of-concept study for computed tomography, Inverse Problems, 29 (2013), 125-146.
doi: 10.1088/0266-5611/29/12/125006.
|
[53]
|
L. Zhu, T. Niu and M. Petrongolo, Iterative CT reconstruction via minimizing adaptively reweighted total variation, Journal of X-ray Science and Technology, 22 (2014), 227-240.
doi: 10.3233/XST-140421.
|