[1]
|
R. E. Alvarez and A. Macovski, Energy-selective reconstructions in X-ray computerised tomography, Physics in Medicine & Biology, 21 (1976), 733.
|
[2]
|
T. Brander and J. Siltakoski, Recovering a variable exponent, Preprint, URL https://arXiv.org/abs/2002.06076.
|
[3]
|
T. Brander and D. Winterrose, Variable exponent Calderón's problem in one dimension, Annales Academiæ Scientiarum Fennicæ, Mathematica, 44 (2019), 925–943.
doi: 10.5186/aasfm.2019.4459.
|
[4]
|
R. A. Brooks and G. Di Chiro, Beam hardening in X-ray reconstructive tomography, Physics in Medicine & Biology, 21 (1976), 390.
doi: 10.1088/0031-9155/21/3/004.
|
[5]
|
H. Choi, V. Ginting, F. Jafari and R. Mnatsakanov, Modified Radon transform inversion using moments, J. Inverse Ill-Posed Probl, 28 (2020), 1-15.
doi: 10.1515/jiip-2018-0090.
|
[6]
|
S. R. Deans, The Radon Transform and Some of Its Applications, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1983. URL https://books.google.com.mt/books?id=xSCc0KGi0u0C.
|
[7]
|
C. Dellacherie and P.-A. Meyer, Probabilities and Potential, vol. 29 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam – New York, 1978.
|
[8]
|
N. Eldredge, Closure of Polynomials of A Function in $L^2$, MathOverflow, 2018, URL https://mathoverflow.net/a/292978/1445
|
[9]
|
D. V. Finch, The attenuated X-ray transform: Recent developments, in Inside Out: Inverse Problems and Applications, Math. Sci. Res. Inst. Publ., 47, Cambridge Univ. Press, Cambridge, (2003), 47–66.
|
[10]
|
D. Gourion and D. Noll, The inverse problem of emission tomography, Inverse Problems, 18 (2002), 1435-1460.
doi: 10.1088/0266-5611/18/5/315.
|
[11]
|
P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms, Fundamentals of Algorithms, 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
doi: 10.1137/1.9780898718836.
|
[12]
|
M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49 (1952), 409-436.
doi: 10.6028/jres.049.044.
|
[13]
|
J. Ilmavirta and F. Monard, Integral geometry on manifolds with boundary and applications, in The Radon Transform: The First 100 Years and Beyond, (eds. R. Ramlau and O. Scherzer), de Gruyter, 2019, 1–73. URL http://users.jyu.fi/ jojapeil/pub/integral-geometry-review.pdf.
doi: 10.1515/9783110560855-004.
|
[14]
|
J. D. Ingle Jr and S. R. Crouch, Spectrochemical Analysis, Prentice Hall College Book Division, Old Tappan, NJ, USA, 1988.
|
[15]
|
O. Kallenberg, Foundations of Modern Probability, Probability and its Applications (New York). Springer-Verlag, New York, 1997.
|
[16]
|
V. P. Krishnan, R. Manna, S. K. Sahoo and V. A. Sharafutdinov, Momentum ray transforms, Inverse Problems and Imaging, 13 (2019), 679–701, URL http://aimsciences.org//article/id/d88823a5-827c-4c4b-909a-c27daa0b74ec.
doi: 10.3934/ipi.2019031.
|
[17]
|
L. A. Lehmann and R. E. Alvarez, Energy-selective radiography a review, in Digital Radiography: Selected Topics (eds. J. G. Kereiakes, S. R. Thomas and C. G. Orton), Springer US, Boston, MA, (1986), 145–188.
doi: 10.1007/978-1-4684-5068-2_7.
|
[18]
|
R. M. Lewitt and S. Matej, Overview of methods for image reconstruction from projections in emission computed tomography, Proceedings of the IEEE, 91 (2003), 1588-1611.
doi: 10.1109/JPROC.2003.817882.
|
[19]
|
C. H. McCollough, S. Leng, L. Yu and J. G. Fletcher, Dual- and multi-energy CT: Principles, technical approaches, and clinical applications, Radiology, 276 (2015), 637-653.
doi: 10.1148/radiol.2015142631.
|
[20]
|
P. Milanfar, Geometric Estimation and Reconstruction from Tomographic Data, PhD thesis, Massachusetts Institute of Technology, 1993.
|
[21]
|
P. Milanfar, W. C. Karl and A. S. Willsky, A moment-based variational approach to tomographic reconstruction, IEEE Transactions on Image Processing, 5 (1996), 459-470.
doi: 10.1109/83.491319.
|
[22]
|
J. L. Mueller and S. Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, vol. 10 of Computational Science & Engineering, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012.
doi: 10.1137/1.9781611972344.
|
[23]
|
F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.
doi: 10.1088/0266-5611/17/1/309.
|
[24]
|
R. G. Novikov, An inversion formula for the attenuated X-ray transformation, Arkiv För Matematik, 40 (2002), 145–167.
doi: 10.1007/BF02384507.
|
[25]
|
G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography: Progress and challenges, Chinese Annals of Mathematics. Series B, 35 (2014), 399-428.
doi: 10.1007/s11401-014-0834-z.
|
[26]
|
G. P. Paternain, M. Salo and G. Uhlmann, Invariant distributions, Beurling transforms and tensor tomography in higher dimensions, Mathematische Annalen, 363 (2015), 305-362.
doi: 10.1007/s00208-015-1169-0.
|
[27]
|
W. Rudin, Real and Complex Analysis, McGraw–Hill Series in Higher Mathematics. McGraw–Hill Book Co., New York-Düsseldorf–Johannesburgn, 1974.
|
[28]
|
K. Schmüdgen, The Moment Problem, vol. 277 of Graduate Texts in Mathematics, Springer International Publishing, 2017.
|
[29]
|
V. A. Sharafutdinov, Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1994.
doi: 10.1515/9783110900095.
|
[30]
|
K. Taguchi and J. S. Iwanczyk, Vision 20/20: Single photon counting x-ray detectors in medical imaging, Medical Physics, 40 (2013), 100901.
doi: 10.1118/1.4820371.
|
[31]
|
A. Welch, G. T. Gullberg, P. E. Christian, J. Li and B. M. Tsui, An investigation of dual energy transmission measurements in simultaneous transmission emission imaging, IEEE Transactions on Nuclear Science, 42 (1995), 2331-2338.
doi: 10.1109/23.489437.
|
[32]
|
D. V. Widder, The Laplace Transform, Princeton Mathematical Series, v. 6. Princeton University Press, Princeton, N. J., 1941.
|