[1]
|
D. M. Bradley, Learning in Modular Systems, PhD thesis, Carnegie Mellon University, 2010.
|
[2]
|
C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai, G. Yuan et al., Circnn: Accelerating and compressing deep neural networks using block-circulant weight matrices, in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, ACM, (2017), 395–408.
doi: 10.1145/3123939.3124552.
|
[3]
|
X. Ding, H. Yang, R. Chan, H. Hu, Y. Peng and T. Zeng, A new initialization method for neural networks with weight sharing, Submitted for Publication.
|
[4]
|
C. Dong, C. C. Loy, K. He and X. Tang, Image super-resolution using deep convolutional networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, 38 (2015), 295-307.
doi: 10.1109/TPAMI.2015.2439281.
|
[5]
|
X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, (2010), 249–256.
|
[6]
|
I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016, http://www.deeplearningbook.org.
|
[7]
|
K. He, X. Zhang, S. Ren and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in The IEEE International Conference on Computer Vision (ICCV), 2015.
doi: 10.1109/ICCV.2015.123.
|
[8]
|
K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
doi: 10.1109/CVPR.2016.90.
|
[9]
|
A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications, arXiv: 1704.04861.
|
[10]
|
J. Hu, L. Shen and G. Sun, Squeeze-and-excitation networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 7132–7141.
doi: 10.1109/CVPR.2018.00745.
|
[11]
|
A. Krizhevsky and G. Hinton, Learning Multiple Layers of Features from Tiny Images, Technical report, Citeseer, 2009.
|
[12]
|
Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (1998), 2278-2324.
doi: 10.1109/5.726791.
|
[13]
|
D. Mishkin and J. Matas, All You Need Is A Good Init, International Conference on Learning Representations, 2016.
|
[14]
|
O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in International Conference on Medical Image Computing and Computer-assisted Intervention, (2015), 234–241.
doi: 10.1007/978-3-319-24574-4_28.
|
[15]
|
W. Rudin, Real and Complex Analysis, 3rd edition, McGraw-Hill Book Co., New York, 1987.
|
[16]
|
W. Rudin, Functional Analysis, 2nd edition, International Series in Pure and Applied Mathematics, McGraw-Hill, Inc., New York, 1991.
|
[17]
|
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen, Mobilenetv2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2018), 4510–4520.
|
[18]
|
A. Saxe, J. L. McClelland and S. Ganguli, Exact solutions to the nonlinear dynamics of learning in deep linear neural networks, arXiv: 1312.6120.
|
[19]
|
K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv: 1409.1556.
|
[20]
|
C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning, Thirty-First AAAI Conference on Artificial Intelligence, 2017.
|
[21]
|
M. Taki, Deep residual networks and weight initialization, arXiv: 1709.02956.
|
[22]
|
L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz and J. Pennington, Dynamical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks, in International Conference on Machine Learning, (2018), 5389–5398.
|
[23]
|
F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, arXiv: 1511.07122.
|
[24]
|
K. Zhang, W. Zuo, S. Gu and L. Zhang, Learning deep cnn denoiser prior for image restoration, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2017), 3929–3938.
|
[25]
|
T. Zhang, G.-J. Qi, B. Xiao and J. Wang, Interleaved group convolutions, in Proceedings of the IEEE International Conference on Computer Vision, (2017), 4373–4382.
doi: 10.1109/ICCV.2017.469.
|